Service Manual Caller ID Compatible Telephone Equipment Model No. KX-TG2521BXT KX-TGA251BXT Digital Cordless Answering System T: Titanium Black Version (for Middle Near East and Africa) KX-TGA251BXT (Handset) KX-TG2521BXT (Base Unit) #### Configuration for each model | | | | Charger Unit | |-----------|------------|------------|--------------| | KX-TG2521 | 1 (TG2521) | 1 (TGA251) | | # **MARNING** This service information is designed for experienced repair technicians only and is not designed for use by the general public. It does not contain warnings or cautions to advise non-technical individuals of potential dangers in attempting to service a product. Products powered by electricity should be serviced or repaired only by experienced professional technicians. Any attempt to service or repair the product or products dealt with in this service information by anyone else could result in serious injury or death. ### **IMPORTANT SAFETY NOTICE -** There are special components used in this equipment which are important for safety. These parts are marked by \triangle in the Schematic Diagrams, Circuit Board Diagrams, Exploded Views and Replacement Parts List. It is essential that these critical parts should be replaced with manufacturer's specified parts to prevent shock, fire or other hazards. Do not modify the original design without permission of manufacturer. # IMPORTANT INFORMATION ABOUT LEAD FREE, (PbF), SOLDERING If lead free solder was used in the manufacture of this product, the printed circuit boards will be marked PbF. Standard leaded, (Pb), solder can be used as usual on boards without the PbF mark. When this mark does appear, please read and follow the special instructions described in this manual on the use of PbF and how it might be permissible to use Pb solder during service and repair work. - When you note the serial number, write down all 11 digits. The serial number may be found on the bottom of the unit. - The illustrations in this Service Manual may vary sllightly from the actual product. # **TABLE OF CONTENTS** | | | PAGE | |----|---|------| | 1 | Safety Precautions | | | | 1.1. For Service Technicians | | | 2 | Warning | | | | 2.1. Battery Caution | | | | 2.2. About Lead Free Solder (Pbf: Pb free) | | | | 2.3. Discarding of P.C. Board | | | | Specifications | | | 4 | Technical Descriptions | | | | 4.1. Block Diagram (Base Unit) | | | | 4.2. Circuit Operation (Base Unit) | 8 | | | 4.3. Block Diagram (Handset) | 11 | | | 4.4. Circuit Operation (Handset) | 12 | | | 4.5. Signal Route | 13 | | 5 | Location of Controls and Components | 15 | | | Installation Instructions | | | 7 | Operating Instructions | 15 | | | 7.1. For Service Hint | 15 | | 8 | Service Mode | | | | 8.1. Engineering Mode | 16 | | | 8.2. Copying Phonebook Items when Repairing | 20 | | | 8.3. How to Clear User Setting | | | 9 | Troubleshooting Guide | 23 | | | 9.1. Troubleshooting Flowchart | | | | 9.2. Troubleshooting by Symptom (Base Unit) | | | | 9.3. Troubleshooting by Symptom (Handset) | 39 | | 10 | Disassembly and Assembly Instructions | | | | 10.1. Disassembly Instructions | | | | 10.2. How to Replace the Handset LCD | | | 11 | Measurements and Adjustments | | | | 11.1. Equipment Required | | | | 11.2. The Setting Method of JIG (Base Unit) | | | | 11.3. Adjustment Standard (Base Unit) | | | | 11.4. The Setting Method of JIG (Handset) | | | | 11.5. Adjustment Standard (Handset) | | | | 11.6. Things to Do after Replacing IC or X'tal | | | | 11.7. RF Specification | | | | 11.8. How to Check the Handset Speaker of | | | | Receiver | | | | 11.9. Frequency Table (MHz) | | | 12 | Miscellaneous | | | | 12.1. How to Replace the Flat Package IC | | | | 12.2. How to Replace the Shield Case | | | | 12.3. Terminal Guide of the ICs, Transistors, Diode | | | | and Electrolytic Capacitors | | | 13 | Schematic Diagram | | | | 13.1. For Schematic Diagram | | | | 13.2. Schematic Diagram (Base Unit) | | | | 13.3. Schematic Diagram (Handset) | | | 14 | Printed Circuit Board | | | | 14.1. Circuit Board (Base Unit_Main) | | | _ | 14.2. Circuit Board (Handset) | | | 15 | Exploded View and Replacement Parts List | | | | 15.1. Cabinet and Electrical Parts (Base Unit) | | | | 15.2. Cabinet and Electrical Parts (Handset) | | | | 15.3. Accessories | | | | 15.4. Replacement Part List | 74 | # 1 Safety Precautions # 1.1. For Service Technicians - Repair service shall be provided in accordance with repair technology information such as service manual so as to prevent fires, injury or electric shock, which can be caused by improper repair work. - 1. When repair services are provided, neither the products nor their parts or members shall be remodeled. - 2. If a lead wire assembly is supplied as a repair part, the lead wire assembly shall be replaced. - 3. FASTON terminals shall be plugged straight in and unplugged straight out. - · ICs and LSIs are vulnerable to static electricity. When repairing, the following precautions will help prevent recurring malfunctions. - 1. Cover plastic parts boxes with aluminum foil. - 2. Ground the soldering irons. - 3. Use a conductive mat on worktable. - 4. Do not grasp IC or LSI pins with bare fingers. # 2 Warning # 2.1. Battery Caution - 1. Danger of explosion if battery is incorrectly replaced. - 2. Replace only with the same or equivalent type recommended by the manufacturer. - 3. Dispose of used batteries according to the manufacture's Instructions. # 2.2. About Lead Free Solder (Pbf: Pb free) #### Note: In the information below, Pb, the symbol for lead in the periodic table of elements, will refer to standard solder or solder that contains lead We will use PbF solder when discussing the lead free solder used in our manufacturing process which is made from Tin (Sn), Silver (Ag), and Copper (Cu). This model, and others like it, manufactured using lead free solder will have PbF stamped on the PCB. For service and repair work we suggest using the same type of solder. #### Caution - PbF solder has a melting point that is 50 °F ~ 70 °F (30 °C ~ 40 °C) higher than Pb solder. Please use a soldering iron with temperature control and adjust it to 700 °F ± 20 °F (370 °C ± 10 °C). - Exercise care while using higher temperature soldering irons.: - Do not heat the PCB for too long time in order to prevent solder splash or damage to the PCB. - PbF solder will tend to splash if it is heated much higher than its melting point, approximately 1100 °F (600 °C). - When applying PbF solder to double layered boards, please check the component side for excess which may flow onto the opposite side (See the figure below). # 2.2.1. Suggested PbF Solder There are several types of PbF solder available commercially. While this product is manufactured using Tin, Silver, and Copper (Sn+Ag+Cu), you can also use Tin and Copper (Sn+Cu) or Tin, Zinc, and Bismuth (Sn+Zn+Bi). Please check the manufacturer's specific instructions for the melting points of their products and any precautions for using their product with other materials. The following lead free (PbF) solder wire sizes are recommended for service of this product: 0.3 mm, 0.6 mm and 1.0 mm. # 2.3. Discarding of P.C. Board When discarding P. C. Board, delete all personal information such as telephone directory and caller list or scrap P. C. Board. # 3 Specifications ■ Standard: DECT (Digital Enhanced Cordless Telecommunications), GAP (Generic Access Profile) ■ Number of channels: 120 Duplex Channels ■ Frequency range: 1.88 GHz to 1.90 GHz ■ Duplex procedure: TDMA (Time Division Multiple Access) ■ Channel spacing: 1,728 kHz ■ **Bit rate:** 1,152 kbit/s ■ Modulation: GFSK (Gaussian Frequency Shift Keying) ■ RF transmission power: Approx. 10 mW (average power per channel) ■ Voice coding: ADPCM 32 kbit/s ■ Power source (AC Adaptor): 100–240 V AC, 50/60 Hz Base unit: PQLV219BXY ■ Power consumption Base unit: Standby: Approx. 0.5 W Maximum: Approx. 3.8 W ■ Operating conditions: 0 °C-40 °C, 20 %-80 % relative air humidity (dry) **■** Dimensions: Base unit: Approx. 98 mm x 121 mm x 54 mm Handset: Approx. 48 mm x 32 mm x 159 mm ■ Mass (weight): Base unit: Approx. 110 $\rm g$ Handset: Approx. 130 $\rm g$ # Note: • Design and specifications are subject to change without notice. #### **Note for Service:** - Operation range: Up to 300 m outdoors, Up to 50 m indoors, depending on the condition. - · Analog telephone connection: Telephone Line # 4 Technical Descriptions # 4.1. Block Diagram (Base Unit) KX-TG2521 BLOCK DIAGRAM (BASE UNIT) # 4.2. Circuit Operation (Base Unit) # 4.2.1. **Outline** Base Unit consists of the following ICs as shown in **Block Diagram (Base Unit)** (P.7). - DECT BBIC (Base Band IC): IC7 - Handling all the audio, signal and data processing needed in a DECT base unit - Controlling the DECT specific physical layer and radio section (Burst Module Controller section) - ADPCM code filter for speech encoding and speech decoding (DSP section) - Echo-cancellation and Echo-suppression (DSP section) - Any tones (tone, sidetone, ringing tone, etc.) generation (DSP section) - DTMF receiver (DSP section) - Clock Generation for RF Module - ADC, DAC, timer, and power control circuitry - PLL Oscillator - Detector - Compress/Expander - First Mixer - All interfaces (ex: RF Power Amp, EEPROM, LED, Analog Front End, etc.) - RF Power Amp.: IC801 - Amplifier for transmission and reception - EEPROM: IC401 - Temporary operating parameters (for RF, etc.) - FLASH MEMORY: IC421 - Voice Prompt (TAM) D/L Area - ICM/OGM Recording Area - Additionally, - Power Supply Circuit (+3.0 V, +2.4 V, +1.8 V output) - Crystal Circuit (10.368 MHz) - Charge Circuit - Telephone Line Interface Circuit # 4.2.2. Power Supply Circuit The power is supplied to the DECT BBIC, RF Module, EEPROM and Charge Contact from AC Adaptor (+6.5 V) as shown in Fig.101. The power supply is as follows; • DECT BBIC (IC7): DC Jack (+6.5 V) \rightarrow IC2 \rightarrow IC7 DC Jack (+6.5 V)
\rightarrow IC2 \rightarrow Q9 \rightarrow IC7 DC Jack (+6.5 V) \rightarrow IC2 \rightarrow Q8 \rightarrow IC7 • RF Power Amp. (IC801): DC Jack (+6.5 V) \rightarrow IC2 \rightarrow IC801 (Power AMP) • EEPROM (IC401): DC Jack (+6.5 V) \rightarrow IC2 \rightarrow IC7 \rightarrow IC401 • FLASH MEMORY (IC421): DC Jack (+6.5 V) \rightarrow IC2 \rightarrow IC7 \rightarrow IC421 • Charge Contact (TP16): DC Jack (+6.5 V) \rightarrow R56 \rightarrow R55 \rightarrow D22 \rightarrow TP16 # 4.2.3. Telephone Line Interface #### <Function> - · Bell signal detection - · Clip signal detection - ON/OFF hook circuit #### Bell & Clip (: Calling Line Identification Presentation: Caller ID) signal detection: In the standby mode, Q3 is open to cut the DC loop current and decrease the ring load. When ring voltage appears at the L1T (A) and L1R (B) leads (when the telephone rings), the AC ring voltage is transferred as follows; - B \rightarrow L2 \rightarrow C4 \rightarrow R6 \rightarrow R33 \rightarrow IC7 Pin 21 (CID INp) - A \rightarrow L1 \rightarrow C3 \rightarrow R4 \rightarrow R35 \rightarrow IC7 Pin 20 (CID INn) #### **ON/OFF** hook circuit: In the standby mode, Q3 is open, and connected as to cut the DC loop current and to cut the voice signal. The unit is consequently in an **on-hook condition**. When IC7 detects a ring signal or press the TALK Key onto the handset, Q4 turns on and then Q3 turns on, thus providing an **off-hook condition** (DC current flows through the circuit) and the following signal flow makes the loop current. • B \rightarrow L2 \rightarrow D3 \rightarrow Q3 \rightarrow Q5 \rightarrow R21 \rightarrow R22 \rightarrow D3 \rightarrow L1 \rightarrow A [OFF HOOK] #### 4.2.4. Transmitter/Receiver • Audio Circuits and DTMF tone signal circuits. Base Unit and Handset mainly consist of RF Module and DECT BBIC. Base Unit and Handset transmit/receive voice signal and data signal through the antenna on carrier frequency. #### Signal Path: *Refer to Signal Route (P.13). #### 4.2.4.1. Transmitter Block The voice signal input from the TEL LINE interface goes to RF Power Amp. (IC801) through DECT BBIC (IC7) as shown in **Block Diagram (Base Unit)** (P.7) The voice signal passes through the analog part of IC7 where it is amplified and converted to a digital audio stream signal. The burst switch controller processes this stream performing encryption and scrambling, adding the various other fields to produce the GAP (Generic Access Profile) standard DECT frame, assigning to a time slot and channel etc. In IC7, the carrier frequency is changing, and frequency modulated RF signal is generated. In IC801, RF signal is amplified, and radiated from antenna. Handset detects the voice signal or data signal in the circuit same as the following explanation of Receiver Block. ## 4.2.4.2. Receiver Block The signal of 1900 MHz band (1881.792 MHz ~ 1897.344 MHz) which is input from antenna is input to IC7 as shown in **Block Diagram (Base Unit)** (P.7). In IC7, the signal of 1900 MHz band is downconverted to 864 kHz signal and demodulated, as GAP (**G**eneric **A**ccess **P**rofile) standard DECT frames. It passes through the decoding section burst switch controller where it separates out the frame information and performs de-encryption and de-scrambling as required. It then goes to the DSP section where it is turned back into analog audio. This is amplified by the analog front end, and goes to the TEL LINE Interface. #### 4.2.5. Pulse Dialling During pulse dialling the hookswitch (Q3, Q4) is used to generate the pulses using the HOOK control signal, which is set high during pulses. To force the line impedance low during the "pause" intervals between dial pulses, the PULSE_DIAL signal turns on Q2. # 4.3. Block Diagram (Handset) # 4.4. Circuit Operation (Handset) #### 4.4.1. Outline Handset consists of the following ICs as shown in Block Diagram (Handset) (P.11). - DECT BBIC (Base Band IC): IC1 - All data signals (forming/analyzing ACK or CMD signal) - All interfaces (ex: Key, Detector Circuit, Charge, DC/DC Converter, EEPROM, LCD, RF Power Amp.) - PLL Oscillator - Detector - Compress/Expander - Reception - RF Power Amp: IC801 - Amplifier for transmission - EEPROM: IC3 - Temporary operating parameters (for RF, etc.) # 4.4.2. Power Supply Circuit/Reset Circuit ### **Circuit Operation:** When power on the Handset, the voltage is as follows; BATTERY(2.2 V ~ 2.6 V: BATT+) \rightarrow F1 \rightarrow Q2 (1.8 V), IC1-43pin (2.5V) The Reset signal generates IC1 (61 pin) and 1.8 V. # 4.4.3. Charge Circuit #### **Circuit Operation:** When charging the handset on the Base Unit, the charge current is as follows; $DC+(6.5 \text{ V}) \rightarrow R56 \rightarrow R55 \rightarrow D22 \rightarrow CHARGE+(Base) \rightarrow CHARGE+(Handset) \rightarrow Q4 \rightarrow D7 \rightarrow F1 \rightarrow BATTERY+...$ Battery... $\mathsf{BATTERY} \to \mathsf{R45} \to \mathsf{GND} \to \mathsf{CHARGE}\text{-}(\mathsf{Handset}) \to \mathsf{CHARGE}\text{-}(\mathsf{Base}) \to \mathsf{GND} \to \mathsf{DC}\text{-}(\mathsf{GND})$ In this way, the BBIC on Handset detects the fact that the battery is charged. The charge current is controlled by switching Q9 of Handset. Refer to Fig.101 in Power Supply Circuit (P.9). # 4.4.4. Battery Low/Power Down Detector #### Circuit Operation: "Battery Low" and "Power Down" are detected by BBIC which check the voltage from battery. The detected voltage is as follows; Battery Low Battery voltage: V(Batt) ≤ 2.25 V ± 50 mV The BBIC detects this level and " starts flashing. Power Down Battery voltage: $V(Batt) \le 2.0 \text{ V} \pm 50 \text{ mV}$ The BBIC detects this level and power down. # 4.4.5. Speakerphone The hands-free loudspeaker at SP+ and SP- is used to generate the ring alarm. # 4.5. Signal Route ``` SIGNAL ROUTE SIGNAL ROUTE I IN - OUT DTMF TONE (BASE UNIT) IC7 (16) - R116 - R29 - C22 - Q5 - Q3 - D3 _ L1 - A TEL OUT (to Tel Line) (BASE UNIT) DTMF TONE A - L1 __ D3 - Q3 - Q5 - R20 - C56 - R117 - IC7 (18) TEL IN (from Tel Line) CDL TX (HANDSET) MIC (+) - R73 - C11 - RA4 - IC1 (20) IC1(77) - IC801 (4) IC1(78) - IC801 (9) - L802 - C812 - (to Tel Line) DA801 - C803 - ANT to BASE (BASE UNIT) from HANDSET ANT1 - C851 - DA802 - C859 - C803 - DA801 - C826 -IC7 (3) ANT2 - C853 - IC7 (2) TIC7 (16) - R116 - R29 - C22 - Q5 - Q3 - D3 L1 - A † (BASE UNIT) CDL RX (from Tel Line) - C851 - ANT1 L802 - C812 - DA801 - C803- C859 - DA802 - C853 - ANT2 to HANDSET (HANDSET) IC (16) - RECEIVER (+) IC (15) - RECEIVER (-) + (BASE UNIT) Caller ID (from Tel Line) DA801 - C803 - C859 - DA802 C851 - ANT1 to HANDSET -(HANDSET) SP-PHONE TX MIC (+) - R73 - C11 - RA4 - IC1 (20) IC1(77) - IC801 (4) MIC (-) - R74 - C13 - RA4 - IC1 (19) IC1(78) - IC801 (3) IC801(9) - L802 - C812 - (to Tel Line) DA801 - C803 - ANT to BASE (BASE UNIT) from HANDSET ANT1 - C851 __ DA802 - C859 - C803 - DA801 -C826 - ANT2 - C853 __ T IC7 (3) L IC7 (2) ___ IC7 (16) - R116 - R29 - C22 - Q5 - Q3 - D3 ___ L1 - A └ L2 - B SP-PHONE RX ← (BASE UNIT) (to Tel Line) L802 - C812 - DA801 - C803 - C859 - DA802 — C851 - ANT1 to HANDSET (HANDSET) T IC1 (33) - SP (-) IC1 (35) - SP (+) ``` # 5 Location of Controls and Components Refer to the Operating Instructions. #### Note: You can download and refer to the Operating Instructions (Instruction book) on TSN Server. # 6 Installation Instructions Refer to the Operating Instructions. #### Note: You can download and refer to the Operating Instructions (Instruction book) on TSN Server. # 7 Operating Instructions Refer to the Operating Instructions. #### Note: You can download and refer to the Operating Instructions (Instruction book) on TSN Server. # 7.1. For Service Hint | Items | Contents | | | | | |----------|--|--|--|--|--| | Battery | You could use other rechargeable batteries sold in a market, but the unit is not guaranteed to work properly. | | | | | | | The battery strength may not be indicated correctly if the battery is disconnected and connected again, even after it is fully charged. In that case, by recharging the battery as mentioned in the Operating Instructions, you will get a correct indication of the battery strength. | | | | | | PIN Code | Change the PIN using the following method. 1 [国/OK] 2 [▼]/[▲]: "Base Unit Setup" → [国/OK] 3 [▼]/[▲]: "Base Unit PIN" → [国/OK] | | | | | | | 【■JOK】
4 [★][7][0][0][0]
5 Enter the new 4-digit base unit PIN. →
【■JOK】 → 【本ひ】 | | | | | # 8 Service Mode # 8.1. Engineering Mode # 8.1.1. Base Unit # Important: Make sure the address on LCD is correct when entering new data. Otherwise, you may ruin the unit. - 3). Select "Base Unit Setup" using [▲]or[▼] then press OK or [►]. - 4). Enter "7", "2", "6", "2", "7", "6", "6", "4". Note: 7262 7664 = PANA SONI (see letters printed on dial keys) - 5). Select "Write EEP" using [▲]or[▼] then press **OK** or [►]. - 6). Enter "●", "●", "●", "●" (Address). (*2) - 7). Enter "*", "*" (New Data). (*2) - 8). Press **OK**, a long confirmation beep will be heard. - 9). Press [>0] (off) to return to standby mode. After that, turn the base unit power off and then power on. Recall/Flash ▼ ▲ # Frequently Used Items (Base Unit) ex.) | Items | Address | Default Data | New | Data | Remarks | |------------------------|-------------|-----------------|--------------|---------------|---| | C-ID (FSK) sensitivity | 04 8B | 00 | 01 (6 dB up) | 02 (12 dB up) | When hex changes from "00" to "01" or "02", | | | | | | | gain increases by 6 dB or 12 dB. | | Frequency | 00 08/00 07 | 02/70 | - | - | Use these items in a READ-ONLY mode to | | ID | 00 02~00 06
 Given value | - | - | confirm the contents. Careless rewriting may cause serious damage to the computer system. | | Bell length | 02 18 | 64 (10sec) (*3) | 1E (3 sec) | 14 (2 sec) | This is time until bell stops ringing. | | | | | | | (Unit: 100 ms) | | PULSE Dial speed | 01 F8 | 28 (40msec) | 14 (20msec) | - | This is pulse make time. (Unit:1 ms) | | (10PPS -> 20PPS) | | (*3) | | | | | | 01 F9 | 3C (60msec) | 1E(30msec) | - | This is pulse break time. (Unit:1 ms) | | | | (*3) | | | | | | 02 07 | 57 (870msec) | 2C (440msec) | - | This is inter-digit time in pulse mode. | | | | (*3) | | | (Unit:10 ms) | - **Note:** (*1) Refer to **Registering a Handset to a Base Unit** in the Operating Instructions. - $(\ensuremath{^*}\xspace2)$ When you enter the address or New Data, please refer to the table below. | Desired Number (hex) | Input Keys | Desired Number (hex) | Input Keys | |----------------------|------------|----------------------|------------| | 0 | 0 | A | [R] + 0 | | 1 | 1 | В | [R] + 1 | | | | С | [R] + 2 | | | | D | [R] + 3 | | - | | E | [R] + 4 | | 9 | 9 | F | [R] + 5 | (*3) | Bell length | $64(hex) = 100(dec) \rightarrow 100 \times 100 \text{ msec} = 10000 \text{ msec} (10 \text{ sec})$ | |------------------|--| | PULSE Dial speed | $28(\text{hex}) = 40(\text{dec}) \rightarrow 40 \times 1\text{msec} = 40\text{msec}$ | | (10PPS -> 20PPS) | $3C(hex) = 60(dec) \rightarrow 60 \times 1msec = 60msec$ | | | $57(\text{hex}) = 87(\text{dec}) \rightarrow 87 \times 10\text{msec} = 870\text{msec}$ | # 8.1.2. Handset # Important: Make sure the address on LCD is correct when entering new data. Otherwise, you may ruin the unit. 8). Press [メウ] (off) to return to standby mode. After that, remove and reinsert the batteries. Press the Power button for about 1 second if the power is not turned on. # Frequently Used Items (Handset) ex. | Items | Address | Default Data | New Data | Possible Adjusted
Value MAX (hex) | Possible Adjusted
Value MIN (hex) | Remarks | |-----------------|-------------|----------------|-------------|--------------------------------------|--------------------------------------|---------| | Sending level | 03 17 | Adjusted value | Given value | F3 | F3 | (*2) | | Receiving level | 03 18 | Adjusted value | Given value | DB | DB | (*3) | | Battery Low | 00 04 | 70 | - | - | - | | | Frequency | 00 02/00 01 | 02/70 | - | - | - | (*4) | | ID | 00 10~00 14 | Given value | - | - | - | | #### Note: (*1) When you enter the address or New Data, please refer to the table below. | Desired Number (hex.) | Input Keys | Desired Number (hex.) | Input Keys | |-----------------------|------------|-----------------------|------------| | 0 | 0 | A | [R] + 0 | | 1 | 1 | В | [R] + 1 | | | | С | [R] + 2 | | | | D | [R] + 3 | | | | E | [R] + 4 | | 9 | 9 | F | [R] + 5 | (*2) When adding "01" (hex) to default value, sending level increases by 0.25 dB. ex.) | Item | Default Data | New Data | | |---------------|--------------|----------|---------| | | E7 | EB | E3 | | Sending level | -1.5dBm | -0.5dBm | -2.5dBm | (*3) When reducing "01" (hex) from default value, receiving level increases by 0.25 dB. ex.) | Item | Default Data | New Data | | |-----------------|--------------|----------|--------| | | E7 | EB | E3 | | Receiving level | -22dBm | -21dBm | -23dBm | (*4) Use these items in a READ-ONLY mode to confirm the contents. Careless rewriting may cause serious damage to the handset. # 8.2. Copying Phonebook Items when Repairing You can copy the handset phonebook to another (compatible Panasonic) handset. This will help to save the original phonebook data which the customer has registered. Refer to the following procedures. Case 1: A base unit has a defect. (Replacing a base unit PCB etc...) Register HS (A) to BS (B). HS (A) is normal, therefore no need to copy the phonebook data. Case 2: A base unit has a defect. (Replacing both a base unit and a handset) - 1. Register HS (A) to BS (B) as a handset no. 2. - 2. Copy the phonebook data from HS (A) to HS (B). - 3. Cancel the HS 2 (HS (A)). #### Note: - BS=Base Unit, HS=Handset - If the max number of handsets are already registered to the base unit, a new handset cannot be registered. - To register the handset, refer to Registering a Handset to a Base Unit in the Operating Instructions. - To cancel the handset, refer to **Deregistering a Handset** in the Operating Instructions. - To copy the handset phonebook, refer to Copying Phonebook Entries in the Operating Instructions. Case 3: A handset has a defect. (Radio transmission is functioning.) - 1. Cancel HS (A). - 2. Register HS (B) as a handset no. 1. - 3. Register HS (A) as a handset no. 2. - 4. Copy the phonebook data from HS (A) to HS (B). - 5. Cancel HS 2 (HS (A)). Case 4: A handset has a defect. (Radio transmission is functioning.) - 1. Register HS (A) as a handset no. 2. - 2. Copy the phonebook data from HS (A) to HS (B). - 3. Cancel HS 2 (HS (A)). #### Note: - BS=Base Unit, HS=Handset - If the max number of handsets are already registered to the base unit, a new handset cannot be registered. - To register the handset, refer to Registering a Handset to a Base Unit in the Operating Instructions. - To cancel the handset, refer to **Deregistering a Handset** in the Operating Instructions. - To copy the handset phonebook, refer to Copying Phonebook Entries in the Operating Instructions. #### 8.3. **How to Clear User Setting** Units are reset to the Factory settings by this operation (Erase stored Phone numbers, Caller list and etc.) - Some menus are not reset. Refer to Operating Instructions (P.15). - The reset menus differ depending on the following operations. - · This operation should not be performed for a usual repair. #### 8.3.1. Resetting both base unit and handset Both the base unit and the registered handset which you did the following steps (1) to (4) are reset. Other registered handsets will not be reset. - (1) Connect the AC adaptor to the base unit and install the charged batteries into the handset. - (2) Confirm the handset is registered to the base unit (♥ lights). If the handset is not registered to the base unit (▼ is flashing), register it. (*1) - 3 Lift the handset and press [> 0] to put the handset in standby mode. - ④ Press 1, 5, 9 and ★ key of the handset simultaneously until a confirmation tone is heard. - (5) Disconnect the AC adaptor, then remove the battery. (*1) Refer to Registering a Handset to a Base Unit in the Operating Instructions. #### 8.3.2. Resetting only handset The only handset is reset by doing the following steps ① to ④. Handset - 1 Install the charged batteries into the handset. - (2) Lift the handset and press [> 0] to put the handset in standby mode. - (3) Press (3), (5), (7) and (#) key of the handset simultaneously until a confirmation tone is heard. (*2) - 4 Remove the battery. ## Note: (*2) - The handset registration to the base unit is cancelled. - If the handset needs to be registered to the base unit, refer to Registering a Handset to a Base Unit in the Operating Instructions. - If users do not bring the base unit with them, the registration procedure has to be done by users themselves. # 9 Troubleshooting Guide # 9.1. Troubleshooting Flowchart ### **Flow Chart** #### **Cross Reference:** Check Power (P.24) **Bell Reception** (P.34) Check Battery Charge (P.25) Check Link (P.26) Check the RF part (P.30) Check Handset Transmission (P.33) **Check Handset Reception (P.33)** Signal Route (P.13) Check Caller ID (P.33) **Check TAM Operation (P.34)** ### 9.1.1. Check Power #### 9.1.1.1. Base Unit Is the AC Adaptor inserted into AC outlet? (*1) ## 9.1.1.2. Handset **Cross Reference:** Power Supply Circuit/Reset Circuit (P.12) # 9.1.2. Check Battery Charge # 9.1.2.1. Base Unit # **Cross Reference:** Charge Circuit (P.12) # 9.1.2.2. Handset # **Cross Reference:** Check Power (P.24) Charge Circuit (P.12) # 9.1.3. Check Link ## 9.1.3.1. Base Unit #### Note: (*1) Refer to Troubleshooting by Symptom (Base Unit) (P.35) #### **Cross Reference:** Check Point (Base Unit) (P.35) **Power Supply Circuit (P.9)** KX-TG2521BXT/KX-TGA251BXT # **Cross Reference:** Check Point (Base Unit) (P.35) #### 9.1.3.2. Handset Note: (*1) Refer to Troubleshooting by Symptom (Handset) (P.39) **Cross Reference:** Check Point (Handset) (P.39) Power Supply Circuit/Reset Circuit (P.12) KX-TG2521BXT/KX-TGA251BXT ### **Cross Reference:** Check Point (Handset) (P.39) # 9.1.4. Check the RF part # 9.1.4.1. Finding out the Defective part - 1. Prepare Regular HS (Handset) and Regular BU (Base unit). - 2. a. Re-register regular HS (Normal mode) to Base Unit (to be checked). - If this operation fails in some ways, the Base Unit is defective. - b. Re-register Handset (to be checked) to regular BU (Normal mode). If this operation fails in some ways, the Handset is defective. #### After All the Checkings or Repairing 1. Re-register the checked Handset to the checked Base Unit, and Regular HS to Regular BU. #### Note: If you need to register a handset, refer to Registering a Handset to a Base Unit in the Operating Instructions. # 9.1.4.2. RF Check Flowchart Each item (1 \sim 3) of RF Check Flowchart corresponds to **Check Table for RF part** (P.32). Please refer to the each item. ## Note: (*1) Base unit - refer to (G) of **Check Point (Base Unit)** (P.35) Handset - refer to (H) of **Check Point (Handset)** (P.39) # 9.1.4.3. Check Table for RF part | No. | Item | BU (Base Unit) Check | HS (Handset) Check | |-----|------------------------------|---|--| | 1 | Link Confirmation Normal | Register Regular HS to BU (to be checked). |
Register HS (to be checked) to Regular BU. | | | HS, BU Mode: [Normal mode] | Press [Talk] key of the Regular HS to establish link. | Press [Talk] key of the HS to establish link. | | 2 | X'tal Frequency confirmation | 1. Check X'tal Frequency. (*1)
(10.368 MHz ± 100 Hz) | 1. Check X'tal Frequency. (*2)
(10.368 MHz ±100Hz) | | 3 | Range Confirmation Normal | Register Regular HS to BU (to be checked). | Register HS (to be checked) to Regular BU. | | | HS, BU Mode: [Normal mode] | Press [Talk] key of the Regular HS to
establish link. Compare the range of the BU (being
checked) with that of the Regular BU. | Press [Talk] key of the HS to establish link. Compare the range of the HS (being checked) with that of the Regular HS. | # Note: - (*1) Refer to **Adjustment Standard (Base Unit)** (P.47) - (*2) Refer to Adjustment Standard (Handset) (P.50) # 9.1.5. Check Handset Transmission ## **Cross Reference:** Signal Route (P.13) # 9.1.6. Check Handset Reception Check Handset Speaker in **How to check the Handset Speaker or Receiver**. Check CDL RX (HANDSET) in Signal Route. #### **Cross Reference:** How to Check the Handset Speaker or Receiver (P.54). Signal Route (P.13) # 9.1.7. Check Caller ID Check Caller ID in Signal Route. # **Cross Reference:** Signal Route (P.13) # 9.1.8. Bell Reception #### 9.1.8.1. Base Unit ### 9.1.8.2. Handset #### **Cross Reference:** Telephone Line Interface (P.10) Check Link (P.26) How to Check the Handset Speaker or Receiver (P.54) # 9.1.9. Check TAM Operation #### **Cross Reference:** **Power Supply Circuit (P.9)** #### Note: (*1) When replacing FLASH MEMORY (IC421), TAM data need to be written to it. Refer to **Base Unit** of **Things to Do after Replacing IC or X'tal** (P.51) # 9.2. Troubleshooting by Symptom (Base Unit) If your unit has below symptoms, follow the instructions in remedy column. Remedies depend on whether you have DECT tester (*1) or not. | | Remedy (*2) | | | |---|-----------------------------|---|--| | Symptom | You don't have DECT Tester. | You have DECT Tester.
(Model Number : CMD60) | | | You cannot dial. | Check item (A)-(I),(S). | Check item (A)-(I), (J)-(P),(S). | | | You cannot hear the caller's voice. | Check item (A)-(G),(Q),(S). | Check item (A)-(G), (J)-(P), (Q),(S) | | | You cannot use handset a little away from base unit even if the handset is within range of the base unit. | - | Check item (J)-(P). | | | The acoustic transmit level is high or low. | Check item (Q). | Check item (Q). | | | The acoustic reception level is high or low. | Check item (Q). | Check item (Q). | | | Base unit and handset do not link each other. | Check item (A)-(I). | Check item (A)-(P). | | | The unit cannot charge. | Check item (R). | Check item (R). | | | TAM does not work. | Check item (S). | Check item (S). | | #### Note: (*2) Refer to Check Point (Base Unit) (P.35) # 9.2.1. Check Point (Base Unit) Please follow the items below when BBIC or EEPROM or FLASH is replaced. #### Note: After the measuring, suck up the solder of TP. *: The Setting Method of JIG (Base Unit) (P.45) is required beforehand. The connections of simulator equipment are as shown in Adjustment Standard (Base Unit) (P.47). | | Items | Check | Procedure | Check or | |---------------|--|-------|--|---| | | Romo | Point | Trooddalo | Replace Parts | | (A) | 3.0 V Supply Confirmation | VDD3 | 1. Confirm that the voltage between test point VDD3 and GND is 3.0 V \pm 0.2 V. | IC2, IC3, C32,
C36, C86, C87,
C88, R91, R92,
R93, R95, D10,
Q10, L3 | | (B) | 1.8 V Supply Confirmation | VDD1 | Confirm that the voltage between test point VDD1 and GND is 1.8 V ± 0.02 V. Execute the command "VDD", then check the current value. Adjust the 1.8V voltage of VDD1 executing command "VDD XX"(XX is the value). | Q8, C75, C614,
C61, IC7 | | | Charge Pump
2.5V Supply Confirma-
tion | VDD5 | 1. Confirm that the voltage between test point VDD5 and GND is 2.5 V \pm 0.3 V. | IC7,C625,C631 | | (D) | Charge Pump
3.0V Supply Confirma-
tion | VDD4 | 1. Confirm that the voltage between test point VDD4 and GND is 3.0 V \pm 0.2 V. | IC7,C616,C630 | | (E)* | BBIC Confirmation | - | BBIC Confirmation (Execute the command "getchk"). Confirm the returned checksum value. Connection of checksum value and program number is shown below. checksum value program number ex.) 53F5 DBR1EN | IC7, X1, R77,
RA80 | | (F)* | EEPROM Confirmation | - | EEP-ROM Confirmation (Execute the command "sendchar EPV"). Confirm the returned Value. (Value for reference is written at "EEPROM C/SUM" in Software_Version_Table.xls). | IC7, RA402,
C51, R657,
IC401 | | (G)* | BBIC Clock Adjustment | CLK | Input Command "sendchar WWD ff 48 IC 8006" Confirm that the voltage between testpoint VDD4 and GND is less than 1.0 V. Input Command "sendchar sfr", then you can confirm the current value. Check X'tal Frequency. (10.368 MHz ± 100 Hz). If the frequency is not 10.368MHz ± 100Hz, adjust the frequency of CLK executing the command "sendchar sfr xx xx (where xx is the value)" so that the reading of the frequency counter is 10.368000 MHz ± 5 Hz. | X1, IC7, R430,
C305 | ^(*1) A general repair is possible even if you don't have the DECT tester because it is for confirming the levels, such as Acoustic level in detail. # KX-TG2521BXT/KX-TGA251BXT | | Items | Check | Procedure | Check or | |---------------|------------------------|---------------|--|---------------------------------| | | items | Point | Troobduit | Replace Parts | | (H)* | Hookswitch Check with | - | 1. Connect Telephone Socket to Tel-simulator which is connected with 600 Ω . | L1, L2, Q3, R14, | | | DC Characteristics | | 2. Set line voltage to 48 V and line current to 40mA at off-hook condition of nor- | R15, Q4, R16, | | | | | mal telephone. | R17, D3, | | | | | 3. Execute the command "hookoff" | R18~R24, | | | | | 4. Confirm that the line current is 40 mA ± 5 mA. | C15~C17, D21, | | | | | 5. Execute the command "hookon". | Q5, R27, IC7 | | /I \ | DTME Companded Chapte | | 6. Confirm that the line current is less than + 0.8 mA. | 107 D440 | | (I) | DTMF Generator Check | - | 1. Connect Telephone Socket to DTMF tester. (Load=600 Ω) 2. Link Handset and push dial key. | IC7, R116,
C141, R29, C22, | | | | | Confirm DTMF character. | C141, R29, C22,
C23, Q5, D21 | | | | | 4. Confirm that the high Group is -6 dBm ± 2 dBm. | 020, Q0, D21 | | | | | 5. Confirm that the low Group is -8 dBm± 2 dBm. | | | (J)* | Transmitted Power Con- | - | Remove the Antenna before starting step from 1 to 7. | IC7, | | (-) | firmation | ANTI_TP | Configure the DECT tester (CMD60) as follows; | C802~C806, | | | | _ | <setting></setting> | C808~C814, | | | | | Test mode: FP | C820, C819, | | | | | Traffic Carrier: 5 | C822, C823, | | | | | Traffic Slot: 4 | C825, C827, | | | | | Mode: Loopback | C826, C834, | | | | | • PMID: 00000 | C851, C853, | | | | | • RF LEVEL = -70 dBm. | C859~C861, | | | | | Execute the command "sendchar TST". Execute the command "sendchar dmv 2 2". | DA801, DA802,
IC801, | | | | | S. Execute the command "sendonal drift" 2.2. Check that "Signalling Status" has been set to "Locked", then press "ACCEPT" | L801~L803, | | | | | RFPI". | C855~C858. | | | | | 5. Initiate connection from Dect tester ("set up connect") | R801~R807, | | | | | 6. Execute the command "ANT1". | R106, R109, | | | | | 7. Confirm that the NTP value at ANT is 19.0 dBm ~ 25.0 dBm. | Q9, C617 | | (K)* | Modulation Check | - | Follow steps 1 to 6 of (J). | IC7, | | | | ANTI_TP | 7.Confirm that the B-Field Modulation is -370 ± 30/ +370± 30 kHz/div & Modu- | C802~C806, | | | | | lated width ≧ 690 kHz using data type Fig31. | C808~C814, | | | | | | C820, C819, | | | | | | C822, C823, | | | | | | C825, C827, | | | | | | C826, C834,
C851, C853, | | | | | | C859~C861, | | | | | | DA801, DA802, | | | | | | IC801, | | | | | | L801~L803, | | | | | | C855~C858, | | | | | | R801~R807, | | | | | | R106, R109, | | /1.53 | | | | Q9, C617 | | (L)* | Frequency Offset Check | -
ANIT! TO | Follow steps 1 to 6 of (J). | IC7, | | | | ANTI_TP | 7.Confirm that the frequency offset is < ± 50 kHz. | C802~C806,
C808~C814, | | | | | | C820, C819, | | | | | | C822, C823, | | | | | | C825, C827, | | | | | | C826, C834, | | | | | | C851, C853, | | | | | | C859~C861, | | | | | | DA801, DA802, | | | | | | IC801, | | | | | | L801~L803, | | | | | | C855~C858, | | | | | | R801~R807, | | | | | | R106, R109, | | | | | | Q9, C617 | | | 14 | Observio | Donas dans | Observe | |---------------|-------------------------|----------|---|---------------| | | Items | Check | Procedure | Check or | | | | Point | | Replace Parts | | (M)* | Frequency Drift Confir- | - | Follow steps 1 to 6 of (J). | IC7, | | | mation |
ANTI_TP | 7.Confirm that the frequency drift is < ± 35 kHz/ms. | C802~C806, | | | | | | C808~C814, | | | | | | C820, C819, | | | | | | C822, C823, | | | | | | C825, C827, | | | | | | C826, C834, | | | | | | C851, C853, | | | | | | C859~C861, | | | | | | DA801, DA802, | | | | | | | | | | | | IC801, | | | | | | L801~L803, | | | | | | C855~C858, | | | | | | R801~R807, | | | | | | R106, R109, | | | | | | Q9, C617 | | (N)* | Sensitivity Receiver | - | Follow steps 1 to 6 of (J). | IC7, | | | Confirmation | ANTI_TP | 7.Set DECT tester power to -90 dBm. | C802~C806, | | | | | 8.Confirm that the BER is < 1000 ppm. | C808~C814, | | | | | | C820, C819, | | | | | | C822, C823, | | | | | | C825, C827, | | | | | | C826, C834, | | | | | | C851, C853, | | | | | | C859~C861, | | | | | | DA801, DA802, | | | | | | IC801, | | | | | | L801~L803, | | | | | | | | | | | | C855~C858, | | | | | | R801~R807, | | | | | | R106, R109, | | | | | | Q9, C617 | | (O)* | Timing Confirmation | - | Follow steps 1 to 6 of (J). | IC7, | | | | ANTI_TP | 7.Confirm that the Timing accuracy is | C802~C806, | | | | | • ± 5.0 ppm (When adjust the frequency of CLK in item (G)). | C808~C814, | | | | | • ± 15 ppm (When do not adjust the frequency of CLK in item (G)). | C820, C819, | | | | | | C822, C823, | | | | | | C825, C827, | | | | | | C826, C834, | | | | | | C851, C853, | | | | | | C859~C861, | | | | | | DA801, DA802, | | | | | | IC801, | | | | | | L801~L803, | | | | | | C855~C858, | | | | | | R801~R807, | | | | | | R106, R109, | | | | | | Q9, C617 | | / D * | Power RAMP Confirma- | | Follow stops 1 to 6 of (I) | IC7, | | (٢)" | | - | Follow steps 1 to 6 of (J). | | | | tion | | 7.Confirm that Power RAMP is matching. | C802~C806, | | | | | | C808~C814, | | | | | | C820, C819, | | | | | | C822, C823, | | | | | | C825, C827, | | | | | | C826, C834, | | | | | | C851, C853, | | | | | | C859~C861, | | | | | | DA801, DA802, | | | | | | IC801, | | | | | | L801~L803, | | | | | | C855~C858, | | | | | | R801~R807, | | | | | | R106, R109, | | | | | | Q9, C617 | | igsquare | | | <u>I</u> | Q0, 0017 | ### KX-TG2521BXT/KX-TGA251BXT | | Items | Check
Point | Procedure | Check or
Replace Parts | |-------------|------------------------------------|----------------|---|--| | (Q) | Audio Check | - | Link with Handset which is connected to Line Simulator. Set line voltage to 48V and line current to 50mA. Input -45dBm(600 Ω)/1kHz to MIC of Handset. Measure the Level at Line I/F and distortion level. Confirm that the level is -1.5dBm ± 2dBm and that the distortion level is <5% at TEL Line (600 Ω Load). Input -20dBm(600 Ω/1kHz to Line I/F. Measure the Level at Receiver of Handset and distortion level (Receive volume set to second position from minimum). Confirm that the level is -22dBm ± 2 dBm and that the distortion level is <5% at Receiver (150 Ω Load). | C56, R117,
R116, C141, R9,
C22, C23 | | (R) | Charging Check | - | 1. Connect Charge Contact 12 Ω /2 W resistor between charge+ and charge 2. Measure and confirm voltage across the resistor is 3.10 V \pm 0.3 V. | R55, R56, D22,
D23, D24, C623,
C624 | | (S) | TAM Operation Confirmation | - | TAM Confirmation (Execute the command "sendchar VPI"). Confirm the returned Value (Value is "DAS7EA 03"). | IC7, IC421,
R424~R429,
C421, C422,
Q421 | | (T) | 2.4V Supply Confirma-
tion VDD2 | VDD2 | 1. Confirm that the voltage between test point VDD2 and GND is 2.5V \pm 0.2V. | IC7, Q9, C617 | ## 9.3. Troubleshooting by Symptom (Handset) If your unit has below symptoms, follow the instructions in remedy column. Remedies depend on whether you have DECT tester (*1) or not. | | Remedy (*2) | | | |---|--|---|--| | Symptom | You don't have DECT Tester. | You have DECT Tester.
(Model Number : CMD60) | | | Battery strength is not indicated correctly by Battery icon. | Check item (A)-(D), (E)-(G). | Check item (A)-(D), (E)-(G). | | | You cannot hear the caller's voice. | Check item (A)-(C), (H),(O). | Check item (A)-(C), (H-(M))-(O) | | | You cannot use handset a little away from base unit even if the handset is within range of the base unit. | - | Check item (I), (N). | | | Does not link between base unit and handset. | Check item (A)-(C), (H). | Check item (A)-(C), (I)-(N). | | | The Audio level is high or low. | Check item (O). | Check item (0). | | | The SP-Phone level is high or low. | Check item (P). | Check item (P). | | #### Note: (*2) Refer to Check Point (Handset) (P.39) ### 9.3.1. Check Point (Handset) Please follow the items below when BBIC or EEPROM is replaced. #### Note: After the measuring, suck up the solder of TP. *: Connections (P.48) is required beforehand. The connections of adjustment equipment are as shown in Adjustment Standard (Handset) (P.50). | | Items | Check | Procedure | | |---------------|---|-------|--|---| | | | Point | | Replace Parts | | (A)* | 1.8 V Supply Adjustment | VDD1 | Confirm that the voltage between test point VDD1 and GND is 1.8 V ± 0.02 V. Execute the command "VDD", then check the current value. Adjust the 1.8V voltage of VDD1 executing command "VDD XX"(XX is the value). | IC1, Q2, C48,
D1, C1, C44,
R45, C40,
C45, F1 | | (B)* | BBIC Confirmation | I | BBIC Confirmation (Execute the command "getchk"). Confirm the returned checksum value. Connection of checksum value and program number is shown below. checksum value program number ex.) B03D DBW2EN | IC1, X1, RA61,
R64, R66 | | (C)* | EEP-ROM Confirmation | 1 | EEP-ROM Confirmation (Execute the command "sendchar EPV"). Confirm the returned Value. (Value for reference is written at "EEPROM C/SUM" in Software_Version_Table.xls). | IC1, IC3,
RA40, C172 | | (D) | Charge Control Check & Charge Current Monitor Check | j | Apply 3.5 V between CHG(+) and CHG(-) with DC power supply and set current limit to 250 mA. Confirm the indication of "charging" on LCD. Confirm that the current limit LED of DC power supply is ON/OFF. Confirm it after waiting over 1 minute at least. Decrease current limit of DC power supply to 100 mA. Confirm that the current limit LED of DC power supply is stable. (Current limiter is ON.) (If charge control cannot be confirmed by this procedure, please use battery to hand-set power supply and try again.) | IC1, Q4 Q9,
D7, R6, R7,
F1, C1, R2,
R30, R31, R8,
R45 | | (E)* | Charge Detection (OFF) Check | - | Stop supplying 3.5 V to CHG (+) and CHG (-). Confirm the indication of "charging" has been cleared. | IC1, Q4 Q9,
D7, R6, R7,
F1, C1, R2,
R30, R31, R8,
R45 | ^(*1) A general repair is possible even if you don't have the DECT tester because it is for confirming the levels, such as Acoustic level in detail. #### KX-TG2521BXT/KX-TGA251BXT | | Items | Check | Procedure | Check or | |--------------|--------------------------------|-------|--|---| | | | Point | | Replace Parts | | (F)* | Battery Monitor Check | - | 1. Apply 2.25 V between BATT+ and BATT 2. Execute the command sendchar PAD sendchar LED 0 sendchar CRX 0 1 sendchar AD1 It assumes that the return value is XX. a) 6c ≤ XX ≤ 71: No need to adjust b) XX: 6A ~ 6B: Need to adjust XX: 72 ~ 74: Need to adjust XX: 72 ~ 74: Need to adjust Write AD value of 2.25 V to EEPROM. ex) read data: XX = 6A, write data: YY = 6A read data: XX = 73, write data: YY = 73 EEPROM = 0009(Low Voltage) write "YY" Execute the command "wreeprom 00 09 01 YY". EEPROM
= 000A(No Voltage) write "YY - 1D" Execute the command "×wreeprom 00 0A 01 ZZ". Note: ZZ = YY - 1D No Voltage writing data limit is '00'. c) XX: 00 ~ 69: Reject YY: 75 = EEP Point* | IC1, F1, C1,
R45 | | (G) | Battery Low Confirma- | | XX: 75 ~ FF: Reject 1. Apply 2.40 V between BATT+ and BATT | IC1, F1, C1, | | (G) | tion | - | Apply 2.40 V between BATT+ and BATT Confirm that there is no flashing of Battery Icon. Apply 2.25 V ± 0.08 V between BATT+ and BATT Confirm that there is flashing of Battery Icon. | R45 | | (H)* | BBIC Clock Adjustment | CLK | Apply 2.6 V between BATT+ and BATT- with DC power. Input Command "sendchar sfr", then you can confirm the current value. Check X'tal Frequency. (10.368 MHz ± 100 Hz). If the frequency is not 10.368 MHz ± 100 Hz, adjust the frequency of CLK executing the command "sendchar sfr xx xx (where xx is the value)" so that the reading of the frequency counter is 10.368000 MHz ± 5 Hz. Note: Clear the registered information for Base Unit before measurement, because the Frequency will not possibly get stable due to the registered information. Pressing the button of "3" "5" "7" "#" clears the registration. Register to it on Base Unit after measurement. | IC1, X1, C47 | | (1)* | Transmitted Power Confirmation | | Remove the Antenna before starting step from 1 to 4. 1. Configure the DECT tester (CMD60) as follows; <setting> • Test mode: PP • RFPI: 0102030405 • Traffic Carrier: 5 • Traffic Slot: 4 • Mode: Loopback • RF LEVEL = -70 dBm • PACKET: PP32Z 2. Execute the command "sendchar TST 01 02 03 04 05". 3. Initiate connection from DECT tester. 4. Confirm that the NTP value at ANT is 19 dBm ~ 25 dBm.</setting> | IC1,
C802~C806,
C808~C814,
C819~C820,
C822,
C825~C827,
C834,
C860~C864,
L801~L804,
DA801,
R801~R808 | | (J)* | Modulation Check | | Follow steps 1 to 3 of (K) . 4.Confirm that the B-Field Modulation is -370±30/ +370±30 kHz/div & Modulated width ≥ 690 kHz using data type Fig 31. | IC1,
C802~C806,
C808~C814,
C819~C820,
C822,
C825~C827,
C834,
C860~C864,
L801~L804,
DA801,
R801~R808 | | | Items | Check | Procedure | Check or | |---------------|--|------------------|---|---| | | | Point | | Replace Parts | | (K)* | Frequency Offset Confirmation | - | Follow steps 1 to 3 of (I). 4.Confirm that the frequency Offset is < ± 50 kHz. | IC1,
C802~C806,
C808~C814,
C819~C820,
C822,
C825~C827,
C834,
C860~C864,
L801~L804,
DA801,
R801~R808 | | (L)* | Frequency Drift Confirmation | - | Follow steps 1 to 3 of (I). 4.Confirm that the frequency Drift is < ± 35 kHz/ms. | IC1,
C802~C806,
C808~C814,
C819~C820,
C822,
C825~C827,
C834,
C860~C864,
L801~L804,
DA801,
R801~R808 | | (M)* | Sensitivity Receiver
Confirmation | - | Follow steps 1 to 3 of (I). 4.Set DECT tester power to -88 dBm. 5.Confirm that the BER is < 1000 ppm. | IC1,
C802~C806,
C808~C814,
C819~C820,
C822,
C825~C827,
C834,
C860~C864,
L801~L804,
DA801,
R801~R808 | | (N)* | Power RAMP Confirmation | h | Follow steps 1 to 3 of (I). 4.Confirm that Power RAMP is matching. | IC1,
C802~C806,
C808~C814,
C819~C820,
C822,
C825~C827,
C834,
C860~C864,
L801~L804,
DA801,
R801~R808 | | (O) | Audio Check and Confirmation |) | Link to BASE which is connected to Line Simulator. Set line voltage to 48V and line current to 50mA. Input -45dBm(600 Ω)/1kHz to MIC of Handset. Measure the Level at Line I/F and distortion level. Confirm that the level is -1.5dBm ± 2dBm and that the distortion level is <5% at TEL Line (600 Ω Load). Input -20dBm(600 Ω /1kHz to Line I/F. Measure the Level at Receiver of Handset and distortion level (Receive volume set to second position from minimum). Confirm that the level is -22dBm ± 2 dBm and that the distortion level is <5% at Receiver (150 Ω Load). | IC1, C12, C96,
C97, R215,
R27, RA4,
C11, C13,
R28, D3, D4,
MIC, R73, R74 | | (P) | SP phone Audio Check
and Confirmation | - | Link to Base which is connected to Line Simulator. Set line voltage to 48V and line current to 50mA. Set the handset off-hook using SP-Phone key. Input -25 dBm(600Ω/1KHz to Line I/F and measure Receiving level at SP+ and SP Confirm that the level is -10.0 dBm ± 2 dBm and that the distortion level is < 5%. (vol = 3) | IC1, C12, C73,
D13, D14,
R73, R74,
MIC, C11,
C13, RA4,
R27, R28,
C96, C97,
R215, C72 | | , , | Charge Pump 3.0V Sup-
ply Confirmation
Charge Pump 4.0V Sup-
ply Confirmation
(This Item is not applied) | CP3.0V
CP4.0V | Confirm that the voltage between testpoint CP3.0V and GND is 3.0V -0.1/ +0.3V. Confirm that the voltage between testpoint CP4.0V and GND is 4.0V -0.2V. | C49, C52~C54
C50, C51,
C55 | ## 10 Disassembly and Assembly Instructions ## 10.1. Disassembly Instructions ## 10.1.1. Base Unit #### 10.1.2. Handset (1) Remove the 2 screws. - 6 Remove the 2 screws to remove the 2 charge terminals. - (7) Remove the screw to remove the main P. C. board. 6 2 screws ## 10.2. How to Replace the Handset LCD #### Note: The illustrations are simplified in this page. They may differ from the actual product. Peel off the FFC (Flexible Flat Cable) from the LCD, in the direction of the arrow. Take care to ensure that the foil on the P.C. board is not damaged. New LCD Fit the heatseal of a new LCD. Heatweld with the tip of the soldering iron about 5 to 8 seconds (in case of 60W soldering iron). Vertical Interval Tolerance NG (Inclined) (Vertical interval tolerance is more than 0.2 mm.) NG (Horizontal interval tolerance is more than 0.2 mm.) ## 11 Measurements and Adjustments This chapter explains the measuring equipment, the JIG connection, and the PC setting method necessary for the measurement in **Troubleshooting Guide** (P.23) ## 11.1. Equipment Required - Digital multi-meter (DMM): it must be able to measure voltage and current. - · Oscilloscope. - Frequency counter: It must be precise enough to measure intervals of 1 Hz (precision; ±4 ppm) Hewlett Packard, 53131A is recommended. - DECT tester: Rohde & Schwarz, CMD 60 is recommended. This equipment may be useful in order to precisely adjust like a mass production. ## 11.2. The Setting Method of JIG (Base Unit) This section explains the PC setting to use command required in Check Point (Base Unit)(P.35). #### <Preparation> - Serial JIG cable: PQZZ1CD300E* - PC which runs in DOS mode - Batch file CD-ROM for setting: PNZZTG2521BX #### Note: *: If you have the JIG Cable for TCD500 series (PQZZ1CD505E), change the following values of resistance. Then you can use it as a JIG Cable for both TCD300 and TCD500 series. (It is an upper compatible JIG Cable.) | Resistor | Old value (kΩ) | New value (kΩ) | |----------|----------------|----------------| | R2 | 22 | 3.3 | | R3 | 22 | 3.3 | | R4 | 22 | 4.7 | | R7 | 4.7 | 10 | #### 11.2.1. Connections - ① Connect the AC adaptor to DC-JACK (base unit). - ② Connect the JIG Cable GND (black) to GND. - 3 Connect the JIG Cable RX (red) to URX and TX (yellow) to UTX. Base unit P. C. board #### Note: *: COM port names may vary depending on what your PC calls it. ## 11.2.2. How to install Batch file into P.C. - 1. Insert the Batch file CD-ROM into CD-ROM drive and copy PNZZTG**** folder to your PC (example: D drive). - 2. Open an MS-DOS mode window. #### <Example for Windows> On your computer, click [Start], select Programs (All Programs for Windows XP/Windows Server 2003), then click MS-DOS Prompt. (for Windows 95/Windows 98) Or Accessories-MS-DOS Prompt. (for Windows Me) Or Command Prompt. (for Windows NT 4.0) Or Accessories-Command Prompt. (for Windows 2000/Windows XP/Windows Server 2003) - **3.** At the DOS prompt, type "D:" (for example) to select the drive, then press the **Enter** key. - **4.** Type "CD ¥PNZZTG****", then press the Enter key. - **5.** Type "SET_COM=X", then press the Enter key - (X: COM port number used for the serial connection on your PC). - **6.** Type "READID", then press the Enter key. - •If any error messages appear, change the port number or check the cable connection. - •If any value appear, go to next step. - 7. Type "DOSKEY", then press the Enter key. #### <Example> - C: ¥Documents and Settings>D: - D: ¥>CD ¥PNZZTG**** - D: ¥PNZZTG**** >SET_COM=X - D: ¥PNZZTG****>READID - 00 52 4F A8 A8 - D: ¥PNZZTG****>DOSKEY - D: ¥PNZZTG****>_ #### <Example: error happens> - C: ¥Documents and Settings>D: - D: ¥>CD ¥PNZZTG**** - D: ¥PNZZTG**** >SET_COM=X - D: ¥PNZZTG****>READID CreateFile error ERROR 10: Can't open serial port D: ¥PNZZTG ****>_ #### Note: • "****" varies depending on the country or models. #### **11.2.3.** Commands See the table below for frequently used commands. | Command name | Function | Example | |--------------|--------------------------
--| | rdeeprom | Read the data of EEPROM | Type "rdeeprom 00 00 FF", and the data from address "00 00" to "FF" is read out. | | readid | Read ID (RFPI) | Type "readid", and the registered ID is read out. | | writeid | Write ID (RFPI) | Type "writeid 00 18 E0 0E 98", and the ID "0018 E0 0E 98" is written. | | hookoff | Off-hook mode on Base | Type "hookoff". | | hookon | On-hook mode on Base | Type "hookon". | | getchk | Read checksum | Type "getchk". | | wreeprom | Write the data of EEPROM | Type "wreeprom 01 23 45". "01 23" is address and "45" is data to be written. | ## 11.3. Adjustment Standard (Base Unit) When connecting the simulator equipment for checking, please refer to below. ## 11.3.1. Bottom View Note: (A) - (T) is referred to Check Point (Base Unit) (P.35) ## 11.4. The Setting Method of JIG (Handset) This section explains the PC setting to use command required in Check Point (Handset)(P.39). #### <Preparation> • Serial JIG cable: PQZZ1CD300E* • PC which runs in DOS mode • Batch file CD-ROM for setting: PNZZTG2521BX #### Note: *: If you have the JIG Cable for TCD500 series (PQZZ1CD505E), change the following values of resistance. Then you can use it as a JIG Cable for both TCD300 and TCD500 series. (It is an upper compatible JIG Cable.) | Resistor | Old value (kΩ) | New value (kΩ) | |----------|----------------|----------------| | R2 | 22 | 3.3 | | R3 | 22 | 3.3 | | R4 | 22 | 4.7 | | R7 | 4.7 | 10 | #### 11.4.1. Connections - ①Connect the DC Power or Battery to BATT+ and BATT-. - ②Connect the JIG cable GND (black) to GND. - 3 Connect the JIG cable UTX (yellow) to UTX and URX (red) to URX. #### Note: *: COM port names may vary depending on what your PC calls it. #### 11.4.2. How to install Batch file into P.C. - **1.** Insert the Batch file CD-ROM into CD-ROM drive and copy PNZZTG***** folder to your PC (example: D drive). - 2. Open an MS-DOS mode window. #### <Example for Windows> On your computer, click [Start], select Programs (All Programs for Windows XP/Windows Server 2003), MS-DOS Prompt. (for Windows 95/Windows 98) Or Accessories-MS-DOS Prompt. (for Windows Me) Or Command Prompt. (for Windows NT 4.0) Or **Accessories-Command Prompt.** (for Windows 2000/Windows XP/Windows Server 2003) - **3.** At the DOS prompt, type "D:" (for example) to select the drive, then press the **Enter** key. - **4.** Type "CD \text{YPNZZTG*****", then press the Enter key. - **5.** Type "SET RTX_COM=X", then press the Enter key (X: COM port number used for the serial connection on your PC). - **6.** Type "READID", then press the Enter key. - •If any error messages appear, change the port number or check the cable connection. - •If any value appear, go to next step. - 7. Type "DOSKEY", then press the Enter key. #### <Example> - C: ¥Documents and Settings>D: - D: ¥>CD ¥PNZZTG***** - D: ¥PNZZTG***** >SET RTX_COM=X - D: ¥PNZZTG****>READID - 00 52 4F A8 A8 - D: ¥PNZZTG****>DOSKEY - D: ¥PNZZTG*****> _ #### <Example: Error happens> - C: ¥Documents and Settings>D: - D: ¥>CD ¥PNZZTG***** - D: ¥PNZZTG**** >SET RTX COM=X - D: ¥PNZZTG****>READID CreateFile error ERROR 10: Can't open serial port D: ¥PNZZTG*****> _ #### Note: • "****" varies depending on the country or models. ### 11.4.3. Commands See the table below for frequently used commands. | Command name | Function | Example | |--------------|--------------------------|--| | rdeeprom | Read the data of EEPROM | Type "rdeeprom 00 00 FF", and the data from address "00 00" to "FF" is read out. | | readid | Read ID (RFPI) | Type "readid", and the registered ID is read out. | | writeid | Write ID (RFPI) | Type "writeid 00 18 E0 0E 98", and the ID "0018 E0 0E 98" is written. | | getchk | Read checksum | Type "getchk". | | wreeprom | Write the data of EEPROM | Type "wreeprom 01 23 45". "01 23" is address and "45" is data to be written. | ## 11.5. Adjustment Standard (Handset) When connecting the simulator equipment for checking, please refer to below. ## 11.5.1. Component View Note: (A) - (R) is referred to Check Point (Handset) (P.39) ## 11.6. Things to Do after Replacing IC or X'tal If repairing or replacing BBIC (FLASH type), EEPROM and X'tal, it is necessary to download the required data such as Programming data or adjustment data, etc. in memory. The set doesn't operate if it is not executed. #### 11.6.1. How to download the data ## 11.6.1.1. Base Unit First, operate the PC setting according to The Setting Method of JIG (Base Unit)(P.45). Then download the appropriate data according to the following procedures. | | Items | How to download/Required adjustment | |-------------------|--|---| | BBIC (FLASH type) | Programming data is stored in memory. | 1) Make sure to connect the JIG cable, then disconnect the DC | | (IC7) | | Power in order to download the data. | | , | | 2) Execute the command "flw480 *******.hex". | | | | 3) Connect the DC Power. | | | | 4) Press the PC Enter key once. | | | | 5) After a few minutes, "Successful upgrade" is displayed on the | | | | PC indicating downloading has finished. | | | | 6) Detach the JIG cable, then disconnect the DC Power. | | | | 7) Connect the DC Power. | | | | 8) Connect the JIG cable again, and execute the command | | | | "getchk", then confirm the checksum value is correct. | | | | If the downloading fails, start again from step 1). | | | | 9) Default batch file: Execute the command "default.bat". | | | | 10) Country version batch file: Execute the command | | | | "TG2521EUXXrevYY.bat". (*1) | | | | 11) Clock adjustment: Refer to Check Point (G). (*2) | | EEPROM (IC401) | Adjusted parameter data is stored in memory. | 1) Change the address "0001" of EEPROM to "55" to download | | | (country version batch file, default batch file, | the data. | | | etc.) | Default batch file: Execute the command "default.bat". | | | | 3) Country version batch file: Execute the command | | | | "TG2521EUXXrevYY.bat". (*1) | | | | 4) Clock adjustment: Refer to Check Point (G). (*2) | | FLASH (IC421) | Voice prompt data is stored in memory. | 1) Wait more than 15 seconds after connecting the JIG Cable. | | | (vary depending on country version) | 2) Execute the command "VPDL2009 -57600 ZZ.bin"(*1). | | | | 3) Wait until ."VP file transfer complete." is displayed on the P.C. | | | | (writing time: aprox. About 1 min) | | | | 4) Detach the JIG cable to disconnect DC Power. | | | | Then reconnect the DC Power and confirm whether the down- | | | | load is successfully completed. | | X'tal (X1) | System clock | Clock adjustment data is in EEPROM, adjust the data again | | | | after replacing it. | | | | 1) Refer to Check Point (F). (*2) | #### Note: ^(*1) XX: country code, YY: revision number, ZZ: Voice Prompt [&]quot;XX", "YY" and "ZZ" vary depending on the country version. You can find them in the batch file, PNZZ- mentioned in **The Setting Method of JIG (Base Unit)** (P.45). ^(*2) Refer to Check Point (Base Unit) (P.35) #### 11.6.1.2. Handset First, operate the PC setting according to The Setting Method of JIG (Handset)(P.48). Then download the appropriate data according to the following procedures. | | Items | How to download/Required adjustment | |-------------------------|---|---| | BBIC (FLASH type) (IC1) | Programming data is stored in memory. | 1) Make sure to connect the JIG cable, then disconnect the DC Power in order to download the data. 2) Execute the command "flw480 *******.hex". 3) Connect the DC Power. 4) Press and hold the handset Power key. 5) While holding down the handset Power key, press the PC Enter key once. 6) After a few minutes, "Successful upgrade" is displayed on the PC indicating downloading has finished. 7) Detach the JIG cable, then press the handset Power key to turn it on. 8) Connect the JIG cable again, and execute the command "getchk", then confirm the checksum value is correct. • If the downloading fails, start again from step 1). 9) Default batch file: Execute the command "default.bat". 10) Default batch file (remaining): Execute the command "TGA251EUDEFrevYY.bat". (*3). 11) Country version batch file: Execute the command "TGA251EUXXrevYY.bat". (*3). 12) Clock adjustment: Refer to Check Point (H). (*4). 13) 1.8 V setting and battery low detection: Refer to Check | | EEPROM (IC3) | Adjusted parameter data is stored in memory. (country version batch file, default batch file, etc.) | Point (A), (F) and (G). (*4). 1) Default batch file: Execute the command "default.bat". 2) Default batch file (remaining): Execute the command "TGA251EUDEFrevYY.bat". (*3) 3) Country version batch file: Execute the command "TGA251EUXXrevYY.bat". (*3) 4) Clock adjustment: Refer to Check Point (H). (*4) 5)
1.8 V setting and battery low detection: Refer to Check Point (A), (F) and (G). (*4) | | X'tal (X1) | System clock | Clock adjustment data is in EEPROM, adjust the data again after replacing it. 1) Refer to Check Point (C). (*4) | #### Note: (*3) XX: country code, YY: revision number "XX" and "YY" vary depending on the country version. You can find them in the batch file, PNZZ- mentioned in **The Setting Method of JIG (Handset)** (P.48). (*4) Refer to Check Point (Handset) (P.39) ## 11.7. RF Specification ## 11.7.1. Base Unit | Item | Value | Refer to * | |------------------|-------------------------------------|-----------------------------| | TX Power | | Check Point (Base Unit) (J) | | Modulation | -370±30/+370±30 kHz/div & Modulated | Check Point (Base Unit) (K) | | | width ≧ 690 kHz | | | Frequency Offset | -50 kHz ~ +50 kHz | Check Point (Base Unit) (L) | | Frequency Drift | < ± 35 kHz / ms | Check Point (Base Unit) (M) | | RX Sensitivity | < 1000 ppm | Check Point (Base Unit) (N) | | Timing Accuracy | < ± 5.0 ppm/<±15.0ppm | Check Point (Base Unit) (O) | | Power RAMP | Power RAMP is matching | Check Point (Base Unit) (P) | ^{*:} Refer to Check Point (Base Unit) (P.35) ## 11.7.2. Handset | Item | Value | Refer to ** | |------------------|-------------------------------|-----------------------------------| | TX Power | 19 dBm ~ 25 dBm | Check Point (Handset) (I) | | Modulation | -370±30/+370±30 kHz/div & Mod | dulated Check Point (Handset) (J) | | | width ≧ 690 kHz | | | Frequency Offset | -50 kHz ~ +50 kHz | Check Point (Handset) (K) | | Frequency Drift | < ± 35 kHz / ms | Check Point (Handset) (L) | | RX Sensitivity | < 1000 ppm | Check Point (Handset) (M) | | Power RAMP | Power RAMP is matching | Check Point (Handset) (N) | ^{**:} Refer to Check Point (Handset) (P.39) ## 11.8. How to Check the Handset Speaker or Receiver - 1. Prepare the digital voltmeter, and set the selector knob to ohm meter. - 2. Put the probes at the speaker terminals as shown below. ## 11.9. Frequency Table (MHz) | Channel No | BASE UNIT | | HANDSET | | | |------------|--------------------|-------------------|--------------------|-------------------|--| | | Transmit Frequency | Receive Frequency | Transmit Frequency | Receive Frequency | | | 1 | 1897.344 | 1897.344 | 1897.344 | 1897.344 | | | 2 | 1895.616 | 1895.616 | 1895.616 | 1895.616 | | | 3 | 1893.888 | 1893.888 | 1893.888 | 1893.888 | | | 4 | 1892.160 | 1892.160 | 1892.160 | 1892.160 | | | 5 | 1890.432 | 1890.432 | 1890.432 | 1890.432 | | | 6 | 1888.704 | 1888.704 | 1888.704 | 1888.704 | | | 7 | 1886.976 | 1886.976 | 1886.976 | 1886.976 | | | 8 | 1885.248 | 1885.248 | 1885.248 | 1885.248 | | | 9 | 1883.520 | 1883.520 | 1883.520 | 1883.520 | | | 10 | 1881.792 | 1881.792 | 1881.792 | 1881.792 | | Note: Channel No. 10: In the Test Mode on Base Unit and Handset. ## 12 Miscellaneous ## 12.1. How to Replace the Flat Package IC Even if you do not have the special tools (for example, a spot heater) to remove the Flat IC, with some solder (large amount), a soldering iron and a cutter knife, you can easily remove the ICs that have more than 100 pins. #### 12.1.1. Preparation - PbF (: Pb free) Solder - · Soldering Iron Tip Temperature of 700 °F ± 20 °F (370 °C ± 10 °C) **Note:** We recommend a 30 to 40 Watt soldering iron. An expert may be able to use a 60 to 80 Watt iron where someone with less experience could overheat and damage the PCB foil. • Flux Recommended Flux: Specific Gravity \rightarrow 0.82. Type \rightarrow RMA (lower residue, non-cleaning type) Note: See About Lead Free Solder (Pbf: Pb free) (P.4) #### 12.1.2. How to Remove the IC 1. Put plenty of solder on the IC pins so that the pins can be completely covered. If the IC pins are not soldered enough, you may give pressure to the P.C. board when cutting the pins with a cutter. 2. Make a few cuts into the joint (between the IC and its pins) first and then cut off the pins thoroughly. 3. While the solder melts, remove it together with the IC pins. When you attach a new IC to the board, remove all solder left on the board with some tools like a soldering wire. If some solder is left at the joint on the board, the new IC will not be attached properly. #### 12.1.3. How to Install the IC 1. Temporarily fix the FLAT PACKAGE IC, soldering the two marked pins. *Check the accuracy of the IC setting with the corresponding soldering foil. 2. Apply flux to all pins of the FLAT PACKAGE IC. 3. Solder the pins, sliding the soldering iron in the direction of the arrow. ## 12.1.4. How to Remove a Solder Bridge - 1. Lightly resolder the bridged portion. - 2. Remove the remaining solder along the pins using a soldering iron as shown in the figure below. ## 12.2. How to Replace the Shield Case ### 12.2.1. Preparation - PbF (: Pb free) Solder - Soldering Iron Tip Temperature of 700°F ± 20°F (370°C ± 10°C) #### Note: We recommend a 30 to 40 Watt soldering iron. An expert may be able to use a 60 to 80 Watt iron where someone with less experience could overheat and damage the PCB foil. Hot Air Desoldering Tool Temperature: 608°F ± 68°F (320°C ± 20°C) #### 12.2.2. Caution - To replace the IC efficiently, choose the right sized nozzle of the hot air desoldering tool that matches the IC package. - Be careful about the temperature of the hot air desoldering tool not to damage the PCB and/or IC. #### 12.2.3. How to Remove the Shield Case #### Note: If you don't have special tools (ex. Hot air disordering tool), conduct the following operations. 1. Cut the case along perforation. 2. Remove the cut part. 3. Cut the four corners along perforation. 4. Remove the reminds by melting solder. ## 12.2.4. How to Install the Shield Case #### Note: - If you don't have special tools (ex. Hot air disordering tool), conduct the following operations. - Shield case's No. : PNMC1013Z - 1. Put the shield case. 2. Solder the surroundings. # 12.3. Terminal Guide of the ICs, Transistors, Diodes and Electrolytic Capacitors #### 12.3.1. Base Unit ### 12.3.2. Handset ## 13 Schematic Diagram ## 13.1. For Schematic Diagram ## 13.1.1. Base Unit (Schematic Diagram (Base Unit)) #### Notes: 1. DC voltage measurements are taken with voltmeter from the negative voltage line. Important Safety Notice: Components identified by \triangle mark have special characteristics important for safety. When replacing any of these components, use only the manufacturer's specified parts. 2. The schematic diagrams may be modified at any time with the development of new technology. ### 13.1.2. Handset (Schematic Diagram (Handset)) #### Notes: - 1. DC voltage measurements are taken with an oscilloscope or a tester with a ground. - 2. The schematic diagram may be modified at any time with the development of new technology. ### Memo ## 13.2. Schematic Diagram (Base Unit) NC: No Components NC: No Components KX-TG2521BX SCHEMATIC DIAGRAM (Base Unit) ## 13.3. Schematic Diagram (Handset) NC: No Components KX-TGA251 SCHEMATIC DIAGRAM (Handset_Main) KX-TG2521BXT/KX-TGA251BXT Memo ## 14 Printed Circuit Board ## 14.1. Circuit Board (Base Unit_Main) ## 14.1.1. Component View KX-TG2521 CIRCUIT BOARD (Base Unit_Main (Component View)) ## 14.1.2. Bottom View KX-TG2521 CIRCUIT BOARD (Base Unit_Main (Bottom View)) ## 14.2. Circuit Board (Handset) ## 14.2.1. Component View KX-TGA251 CIRCUIT BOARD (Handset_Main (Component View)) ## 14.2.2. Bottom View KX-TGA251 CIRCUIT BOARD (Handset_Main (Bottom View)) ## 15 Exploded View and Replacement Parts List ## 15.1. Cabinet and Electrical Parts (Base Unit) | Ref.No. | Figure | |---------|--------------| | А | Φ 2.6 x 8 mm | #### Note: (*1) The SPACERs (No.7) are cut from the excess parts of SPACER (No.108) of **Cabinet and Electrical Parts (Handset)** (P.72). ## 15.2. Cabinet and Electrical Parts (Handset) #### Note: - (*1) This cable is fixed by welding. Refer to $\bf How\ to\ Replace\ the\ Handset\ LCD\ (P.44).$ - (*2) The rechargeable Ni-MH battery P03P or HHR-4NGE is available through sales route of Panasonic. - (*3) Attach the spacer (No. 119) to the exact location described above. ## 15.3. Accessories ## 15.4. Replacement Part List 1. RTL (Retention Time Limited) #### Note: The "RTL" marking indicates that its Retention Time is Limited. When production is discontinued, this item will continue to be available only for a specific period of time. This period of time depends on the type of item, and the local laws governing parts and product retention. At the end of this period, the item will no longer be available. #### 2. Important safety notice Components identified by the \triangle mark indicates special characteristics important for safety. When replacing any of these components, only use specified manufacture's parts. - 3. The S mark means the part is one of some identical parts. For that reason, it may be different from the installed part. - 4. ISO code (Example: ABS-94HB) of the remarks column shows quality of the material and a flame resisting grade about plastics. - 5. RESISTORS & CAPACITORS Unless otherwise specified; All resistors are in ohms (Ω) k=1000 Ω , M=1000 k Ω All capacitors are in MICRO FARADS (μ F)p= $\mu\mu$ F *Type & Wattage of Resistor #### Туре | ERDS:Carbon | ERG:Metal Oxide | PQ4R:Chip
ERS:Fusible Resistor
ERF:Cement Resistor | |-------------|-----------------|--| | Wattage | - | | | 10.16:1/8W | 14.25:1/4W | 12:1/2W | 1:1W | 2:2W | 3:3W | |------------|------------|---------|------|------|------| ^{*}Type & Voltage Of Capacitor Type | ECFD:Semi-Conductor
ECQS:Styrol | ECCD,ECKD,ECBT,F1K,ECUV:Ceramic ECQE,ECQV,ECQG:Polyester | |------------------------------------|--| | ECUV,PQCUV,ECUE:Chip | ECEA,ECST,EEE:Electlytic ECQP:Polypropylene | #### Voltage | ECQ Type | ECQG
ECQV Type | ECSZ Type | Oth | ers | |---|----------------------------
---|---|---| | 1H:50V
2A:100V
2E:250V
2H:500V | 05:50V
1:100V
2:200V | 0F:3.15V
1A:10V
1V:35V
0J:6.3V | 0J :6.3V
1A :10V
1C :16V
1E,25:25V | 1V :35V
50,1H:50V
1J :16V
2A :100V | #### 15.4.1. Base Unit #### 15.4.1.1. Cabinet and Electrical Parts | Safety | Ref.
No. | Part No. | Part Name & Description | Remarks | |--------|-------------|--------------|-----------------------------|---------| | | 1 | PNKM1129V3 | CABINET BODY | PS-HB | | | 2 | K2ECYZ000001 | JACK, DC | | | | 3 | PQJJ1T039X | JACK, MODULAR | | | | 4 | PNBC1303Z2 | BUTTON, LOCATOR | ABS-HB | | | 5 | PNJT1046Z | CHARGE TERMINAL | | | | 6 | PNLA1030Z | ANTENNA | | | | 7 | PNYE1027Z | SPACER, ANTENNA | | | | 8 | PNKF1097Z1 | CABINET COVER | PS-HB | | | 9 | PQHA10023Z | RUBBER PARTS, FOOT CUSH-ION | | #### 15.4.1.2. Main P.C.Board Parts #### Note - (*1) When replacing IC7, IC401 or X1, make the adjustment using PNZZTG2521BX. Refer to **How to download the data** (P.51) of **Things to Do after Replacing IC or X'tal.** - (*2) When removing E1, use special tools (ex. Hot air disordering tool). - (*3) Backside of this IC has a ground plate. - (*4) Supplied IC is Flat Package Type. | Safety | Ref.
No. | Part No. | Part Name & Description | Remark | |--------|-------------|--------------|------------------------------|--------| | | PCB1 | PNWPG2521BXH | MAIN P.C.BOARD ASS'Y (RTL) | | | | | | (ICs) | | | | IC3 | C0DBAGZ00026 | IC | | | | IC7 | C1CB00002906 | IC(BBIC(FLASH))(*1)(*3) (*4) | | | | IC401 | PNWITG6521EH | IC (EEPROM) (*1) | | | | IC421 | C3FBLY000048 | | | | | IC801 | C1CB00001842 | IC (*3) | | | | | | (TRANSISTORS) | | | | IC2 | B1ZBZ0000065 | TRANSISTOR (SI) | | | | Q2 | B1ABCE000009 | TRANSISTOR (SI) | | | | Q3 | B1ACGP000007 | TRANSISTOR (SI) | | | | Q4 | PQVTBF822T7 | TRANSISTOR (SI) | | | | Q5 | 2SD0874AS | TRANSISTOR (SI) | | | | Q8 | B1ADGE000004 | TRANSISTOR (SI) | | | | Q9 | B1ADGE000004 | TRANSISTOR (SI) | | | | Q10 | UNR92A6J0L | TRANSISTOR (SI) | | | | Q24 | UN9219J | TRANSISTOR (SI) | s | | | Q25 | UN9219J | TRANSISTOR (SI) | s | | | Q421 | 2SC6054JSL | TRANSISTOR (SI) | | | | | | (DIODES) | | | | D3 | B0EDER000009 | DIODE(SI) | | | | D10 | MA8033 | DIODE(SI) | s | | | D21 | PQVDRLZ20A | DIODE(SI) | s | | | DA801 | B0DDCD00001 | DIODE(SI) | | | | DA802 | B0DDCD00001 | DIODE(SI) | | | | | | (COILS) | | | | L1 | PQLQXF330K | COIL | s | | | L2 | PQLQXF330K | COIL | s | | | L3 | G1C220M00037 | COIL | S | | | L801 | G1C27NJ00010 | COIL | | | | L802 | G1C3N0ZA0063 | COIL | | | | L803 | G1C3N0ZA0063 | COIL | | | | | | (RESISTOR ARRAYS) | | | | RA1 | D1H810240004 | RESISTOR ARRAY | s | | | RA402 | D1H410320002 | RESISTOR ARRAY | | | | RA80 | D1H422120001 | RESISTOR ARRAY | | | | | | (VARISTOR) | | | | SA1 | J0LF00000026 | VARISTOR (SURGE | | | | | | ABSORBER) | | | | | | (RESISTORS) | | | | R3 | PQ4R10XJ184 | 180k | S | | - | R4 | PQ4R10XJ105 | 1M | s | | | R5 | PQ4R10XJ184 | 180k | s | | - | R6 | PQ4R10XJ105 | 1M | s | | - | R7 | ERJ3GEYJ565 | 5.6M | s | | | R8 | ERJ3GEYJ104 | 100k | s | | | R9 | ERJ3GEYJ565 | 5.6M | S | | - | R10 | ERJ3GEYJ104 | 100k | s | | - | R12 | ERJ2GEJ103 | 10k | s | | | R13 | ERJ2GEJ681 | 680 | s | | | R14 | ERJ3GEYJ104 | 100k | s | | | R15 | PQ4R18XJ272 | 2.7k | s | | | R16 | ERJ2GEJ103 | 10k | s | | | R17 | ERJ2GEJ222 | 2.2k | s | | | R18 | ERJ2GEJ273X | 27k | s | | | R19 | ERJ2GEJ822 | 8.2k | s | | | R20 | ERJ2GEJ272 | 2.7k | s | | | R21 | ERJ12YJ120 | 12 | | | | R22 | ERJ12YJ270 | 27 | i | | Safety | Ref. | Part No. | Part Name & Description | Romarks | |----------|---------------|------------------------------|-------------------------|---------| | Salety | No. | rait No. | rait Name & Description | Remarks | | | R23 | ERJ2GEJ104 | 100k | s | | | R24 | ERJ2GEJ273X | 27k | S | | | R27 | ERJ2GEJ104 | 100k | S | | | R28 | ERJ2GEJ474X | 470k | S | | | R29 | ERJ2GE0R00 | 0 | S | | | R30 | ERJ3GEYJ911 | 910 | S | | | R31 | ERJ3GEY0R00 | 0 | S | | | R32 | ERJ2GEJ823 | 82k | S | | | R33 | ERJ2GEJ102 | 1k | S | | | R34 | ERJ2GEJ823 | 82k | s | | | R35 | ERJ2GEJ102 | 1k | S | | | R36 | ERJ2GEJ124 | 120k | S | | | R37 | ERJ2GEJ392 | 3.9k | S | | | R40 | ERJ2GEJ271 | 270 | S | | | R42 | PQ4R10XJ475 | 4.7M | S | | | R43 | PQ4R10XJ475 | 4.7M | s | | | R55 | ERJ1TYJ5R6U | 5.6 | | | | R56 | ERJ1TYJ5R6U | 5.6 | | | | R57 | ERJ6GEY0R00 | 0 | S | | | R75 | ERJ2GEJ101 | 100 | S | | <u> </u> | R76
R77 | ERJ2GEJ102
ERJ2GEJ103 | 1k
10k | s | | | | ERJ2GEJ103
ERJ2GEJ332 | 3.3k | _ | | | R81
R91 | ERJ2GEJ332
ERJ2GEJ470 | 3.3k
47 | s
s | | <u> </u> | R91 | ERJ2GEJ470
ERJ2GEJ121 | 120 | s | | <u> </u> | R92 | ERJ2GEJ121
ERJ2GEJ472X | 4.7k | S | | - | R95 | ERJ2GEJ472X
ERJ2GEJ681 | 4.7k | S | | | R106 | ERJ2GEJ001
ERJ2GEJ221 | 220 | S | | | R109 | ERJ2GEJ221 | 220 | s | | | R116 | ERJ2GE0R00 | 0 | S | | | R117 | ERJ2GEJ332 | 3.3k | s | | | R124 | PQ4R18XJ100 | 10 | S | | | R129 | ERJ2GEJ103 | 10k | S | | | R130 | ERJ2GEJ102 | 1k | S | | | R132 | ERJ2GEJ681 | 680 | S | | | R133 | ERJ2GEJ152 | 1.5k | S | | | R135 | ERJ2GEJ103 | 10k | S | | | R424 | ERJ2GEJ103 | 10k | S | | | R425 | ERJ2GEJ274 | 270k | S | | | R426 | ERJ2GEJ561 | 560 | s | | | R427 | ERJ2GEJ561 | 560 | s | | | R428 | ERJ2GEJ561 | 560 | S | | | R429 | ERJ2GEJ332 | 3.3k | s | | | R430 | ERJ2GEJ100 | 10 | S | | | R511 | ERJ2GE0R00 | 0 | s | | | R615 | D0GA563ZA006 | 56k | | | | R657 | ERJ2GEJ103 | 10k | S | | | R801 | ERJ2GEJ223 | 22k | S | | | R802 | ERJ2GEJ121 | 120 | s | | | R803 | ERJ2GEJ102 | 1k | s | | | R804 | ERJ2GEJ102 | 1k | s | | | R805 | ERJ2GEJ470 | 47 | S | | | R806 | ERJ2GEJ221 | 220 | S | | | R807 | ERJ2GEJ221 | 220 | S | | | G2 | m1 w0 w c 0 1 - 0 0 - | (CAPACITORS) | | | | C3 | F1K2H681A008 | | | | | C4 | F1K2H681A008 | | | | | C5 | ECUV1C103KBV | | - | | | C6
C7 | ECUV1C103KBV
ECUV1C104KBV | | | | | C7 | ECUVICIO4KBV
ECUVICIO4KBV | | | | | C9 | F1K2H681A008 | | | | | C10 | F1K2H681A008 | | | | | C14 | ECUE1C223KBQ | | | | | C19 | ECUV1H102KBV | | | | - | C22 | PQCUV1A105KB | | | | - | C25 | ECUE1C103KBQ | | | | - | C27 | F2A1H100B132 | | | | - | C32 | F2A1C1010119 | | | | | C36 | F2A1A3310040 | | | | - | C42 | ECUV1C103KBV | | | | — | C43 | ECUV1C103KBV | | | | - | C51 | ECUE1A104KBQ | | | | <u> </u> | ! | | <u> </u> | ļ | | Safety | Ref.
No. | Part No. | Part Name & Description | Remarks | |--------|-------------|--------------|-------------------------|---------| | | C52 | ECUE1H821KBQ | 820p | | | | C53 | ECUE1H821KBQ | 820p | | | | C54 | ECUE1A333KBQ | | | | | C55 | ECUE1A823KBQ | | | | | C56 | ECUV1C104KBV | | | | | C60 | ECUE1A104KBQ | | | | | C61 | ECUE1A104KBQ | | | | | C65 | ECUE1H100DCQ | | | | | C72 | ECUE1A104KBQ | | | | | C74 | F1G1H100A723 | - | | | | C75 | ECUE1A104KBQ | | | | | C84 | ECUV1A225KB | 2.2 | | | | C86 | ECUV1A105KBV | | | | | C87 | ECUE1A104KBQ | | | | | C88 | ECUE1C103KBQ | | | | | C136 | ECUE1H100DCQ | | | | | C137 | ECUE1H100DCQ | _ | | | | C157 | ECUE1H102KBQ | | | | | C168 | F1G1H100A723 | | | | | C169 | F1G1H100A723 | - | | | | C170 | F1G1H100A723 | | | | | C171 | F1G1H100A723 | | | | | C305 | ECUE0J105KBQ | | | | | C421 | ECUE1C103KBQ | | | | | C422 | ECUE1A104KBQ | | | | | C501 | ECUE1H102KBQ | | | | | C614 | ECUV1A105KBV | | | | | C615 | ECUV1A105KBV | | | | | C616 | ECUV1A105KBV | | | | | C617 | ECUV1A105KBV | | | | | C623 | ECUV1C105ZFV | | | | | C624 | ECUV1H104ZFV | 0.1 | | | | C625 | ECUV1A105KBV | | | | | C630 | F1G1H100A723 | | | | | C631 | F1G1H100A723 | _ | | | | C802 | F1G1H1R8A480 | | | | | C803 | F1G1H1R5A480 | | | | | C804 | F1G1H1R8A480 | _ | | | | C805 | F1G1H3R3A480 | _ | | | | C806 | F1G1H3R3A480 | | | | | C808 | ECUE1A104KBQ | | | | | C809 | F1G1H100A723 | _ | | | | C810 | F1G1H2R2A480 | 2.2p | | | | C811 | F1G1H100A723 | - | | | | C812 | F1G1H100A723 | = | | | | C813 | F1G1H2R2A480 | | | | | C814 | ECUE1H332KBQ | | | | | C819 | F1G1H100A723 | | | | | C820 | F1G1HR50A480 | | | | | C822 | F1G1H3R0A480 | | | | | C823 | ECUE1H101JCQ | | | | | C825 | F1G1H100A723 | _ | | | | C826 | F1G1H1R1A480 | | | | | C827 | F1G1H100A723 | _ | | | | C834 | F1G1H1R0A480 | _ | | | | C851 | F1G1H7R0A480 | | | | | C853 | F1G1H7R0A480 | _ | | | | C855 | F1G1H100A723 | | | | | C856 | ECUE1H101JCQ | | | | | C857 | F1G1H100A723 | 10p | | | | C858 | ECUE1H101JCQ | | | | | C859 | F1G1H100A723 | 10p | | | | C860 | F1G1H3R0A480 | 3p | | | | | | (OTHERS) | | | | E1 | PNMC1013Z | CASE, MAGNETIC | | | | | | SHIELD (*2) | | | | X1 | | CRYSTAL OSCILLATOR (*1) | | | | F1 | K5H302Y00003 | | | | i | SW1 | K0H1BA000259 | SPECIAL SWITCH | | ### 15.4.2. Handset ### 15.4.2.1. Cabinet and Electrical Parts | a . c . i | Ref. | | In | | |-----------|------|--------------|-------------------------|---------| | Safety | No. | Part No. | Part Name & Description | Remarks | | | | | | | | | 101 | PNGP1087Z2 | PANEL, LCD | PMMA-HB | | | 102 | PNYE1026Z | TAPE, DOUBLESIDED | | | | 103 | PNKM1123X2 | CABINET BODY | PS-HB | | | 104 | PNHS1072Z | SPACER, RECEIVERNET | | | | 105 | PQHS10467Z | COVER, SPEAKER NET | | | | 106 | L0AD02A00028 | RECEIVER | | | | 107 | PQHG10729Z | RUBBER PARTS, RECEIVER | | | | 108 | PNYE1027Z | SPACER, CUSHION LCD | | | | 109 | PNBC1003Z2 | BUTTON, VOLUME KEY | ABS-HB | | | 110 | PNJK1072Y | KEYBOARD SWITCH | | | | 111 | PNHX1165Z | COVER, LCD SHEET | | | | 112 | PNJT1027Z | CHARGE TERMINAL (L) | | | | 113 | PNJT1026Z | CHARGE TERMINAL (R) | | | | 114 | PQHR11315Z | GUIDE, SPEAKER | ABS-HB | | | 115 | L0AA02A00095 | SPEAKER | | | | 116 | PQHS10784Y | SPACER, SPEAKER NET | | | | 117 | PQJC10056W | BATTERY TERMINAL | | | | 118 | PNKF1093Z1 | CABINET COVER | ABS-HB | | | 119 | PNHS1079Z | SPACER, BATTERY | | | | 120 | PNKK1038Y1 | LID, BATTERY | ABS-HB | ## 15.4.2.2. Main P.C.Board Parts #### Note: - (*1) Reconfirm the model No. written on the handset's name plate when replacing PCB100. Because
the model No. of the optional handset may differ from the included handset. - (*2) When replacing IC1, IC3 or X1, make the adjustment using PNZZTG2521BX. Refer to **Handset** (P.52) of **Things** to **Do after Replacing IC or X'tal.** - (*3) When removing E105, use special tools (ex. Hot air disordering tool). - (*4) When replacing the handset LCD, See How to Replace the Handset LCD(P.44). - (*5) Backside of this IC has a ground plate. - (*6) Supplied IC is Flat Package Type. | Safety | Ref.
No. | Part No. | Part Name & Description | Remarks | |--------|-------------|--------------|----------------------------------|---------| | | PCB100 | PNWPGA251BXR | MAIN P.C.BOARD ASS'Y (RTL) (*1) | | | | | | (ICs) | | | | IC1 | C1CB00002906 | IC (BBIC (FLASH)) (*2) (*5) (*6) | | | | IC3 | PNWIGA250EXR | IC (EEPROM) (*2) | | | | IC801 | C1CB00001842 | IC (*5) | | | | | | (TRANSISTORS) | | | | Q2 | B1ADGE000004 | TRANSISTOR(SI) | | | | Q4 | B1ADGE000004 | TRANSISTOR(SI) | | | | Q7 | UN9219J | TRANSISTOR(SI) | S | | | Q9 | 2SC6054JSL | TRANSISTOR(SI) | | | | Q11 | B1ADCF000161 | TRANSISTOR(SI) | | | | Q12 | B1ADCF000161 | TRANSISTOR(SI) | | | | | | (DIODES) | | | | D1 | MA2YD2120L | DIODE(SI) | | | | D7 | MA2ZD0200L | DIODE(SI) | | | | D13 | MA8043M | DIODE(SI) | S | | | D14 | MA8043M | DIODE(SI) | S | | | D21 | MA8043M | DIODE(SI) | S | | | D22 | MA8043M | DIODE(SI) | S | | | DA801 | B0DDCD00001 | DIODE(SI) | | | | | | (LEDS) | | | | LED21 | B3ACB0000216 | LED | | | | LED22 | B3ACB0000216 | LED | | | | LED23 | B3ACB0000216 | LED | | | | | | (COILS) | | | F1 | Safety | Ref.
No. | Part No. | Part Name & Description | Remarks | |--|--------|-------------|--------------|-------------------------|---------| | LB02 GLCSM6ZA0063 COIL | | F1 | PQLQR2M5N6K | COIL | S | | L803 GICSNEZAO063 COIL | | | | | | | RA1 D1H81240004 (RESISTOR ARRAY) RA4 D1H432220001 RESISTOR ARRAY RA52 EMEZEVIZIJX RESISTOR ARRAY RA61 D1H422120001 RESISTOR ARRAY RA61 D1H422120001 RESISTOR ARRAY RA61 D1H422120001 RESISTOR ARRAY RA600 D1H410220001 RESISTOR ARRAY RA61 D1H422120001 RESISTOR ARRAY RA61 D1H422120001 RESISTOR ARRAY RA61 D1H422120001 RESISTOR ARRAY RA61 D1H422120001 RESISTOR ARRAY RA61 D1H40220001 RESISTOR ARRAY RA61 D1H402000045 IC FILTER RA61 D1H4021000045 IC FILTER RA62 EMJGEJ102 Ik RA73 EMJGEJ101 I00 RA73 EMJGEJ101 I00 RA73 EMJGEJ101 I00 RA74 EMJGEJ101 I00 RA75 EMJGEJ101 I00 RA75 EMJGEJ103 IOK RA75 EMJGEJ103 IOK RA76 EMJGEJ103 IOK RA78 EMJGEJ103 IOK RA78 EMJGEJ103 IOK RA78 EMJGEJ103 IOK RA79 EMJGEJ100 IO RA64 EMJGEJ100 IO RA64 EMJGEJ100 IO RA65 EMJGEJ100 IO RA66 EMJGEJ100 IO RA67 EMJGEJ100 IO RA68 EMJGEJ100 IO RA69 EMJGEJ100 IO RA69 EMJGEJ100 IO RA60 EMJGEJ210 IMJG | | | | | | | RA1 D1H910240004 RESISTOR ARRAY RA4 D1H33220001 RESISTOR ARRAY RA40 EMERSHV12LW RESISTOR ARRAY RA40 EMERSHV12LW RESISTOR ARRAY RA61 D1H42122001 RESISTOR ARRAY RA61 D1H42122001 RESISTOR ARRAY RA60 D1H41022001 RESISTOR ARRAY L46 J0JDC0000045 IC FILTER L47 J0JDC0000045 IC FILTER L47 J0JDC0000045 IC FILTER R5 EMJGEJ102 IR R7 EMJGEJ122 1.2k R8 EMJGEJ102 IR R7 EMJGEJ122 1.2k R8 EMJGEJ101 IO R20 EMJGEJ101 IO R20 EMJGEJ102 IR R27 EMJGEJ122 1.2k R8 EMJGEJ101 IO R23 EMJGEJ101 IO R24 EMJGEJ102 IR R27 EMJGEJ102 IR R27 EMJGEJ101 IO R30 EMJGEJ101 IO R45 EMJGEJ101 IO R45 EMJGEJ101 IO R45 EMJGEJ101 IO R45 EMJGEJ101 IO R50 EMJGEJ103 IO R51 EMJGEJ103 IO R51 EMJGEJ103 IO R52 EMJGEJ103 IO R53 EMJGEJ103 IO R54 EMJGEJ103 IO R55 EMJGEJ102 IR R54 EMJGEJ103 IO R55 EMJGEJ102 IR R55 EMJGEJ102 IR R56 EMJGEJ103 IO R66 EMJGEJ103 IO R66 EMJGEJ103 IO R66 EMJGEJ104 IO R64 EMJGEJ103 IO R66 EMJGEJ104 IO R64 EMJGEJ103 IO R66 EMJGEJ104 IO R64 EMJGEJ103 IO R66 EMJGEJ104 IO R67 EMJGEJ104 IR R67 EMJGEJ820 82 R74 EMJGEJ103 IO R66 EMJGEJ104 IO R67 EMJGEJ104 IR R67 EMJGEJ820 R2 R74 R75 EMJGEJ820 R2 R76 BMJGEJ820 R2 R77 EMJGEJ820 R2 R77 EMJGEJ820 R2 R78 BMJGEJ820 R2 R78 BMJGEJ820 R2 R78 BMJGEJ820 R2 R79 EMJGEJ820 R2 R70 D1MJGEMB R2 R70 EMJGEJ820 EMJGEJ82 | | T803 | GIC3N6ZAUU63 | | | | RA4 D1H43322001 RESISTOR ARRAY RA32 EXB28V121JX RESISTOR ARRAY RA60 EXB28V103 RESISTOR ARRAY RA61 D1H422120001 RESISTOR ARRAY RA60 D1H410220001 RESISTOR ARRAY RA60 D1H410220001 RESISTOR ARRAY RA60 D1H410220001 RESISTOR ARRAY RA60 D1H410220001 RESISTOR ARRAY RESISTOR ARRAY RA60 D1H410220001 RESISTOR ARRAY RES | | RA1 | D1H810240004 | | S | | RA32 EXE28V121JX RESISTOR ARRAY RA40 D1842I20001 RESISTOR ARRAY RA61 D1842I20001 RESISTOR ARRAY RA60 D18410220001 RESISTOR ARRAY L46 J0JDC0000045 IC FILTER L47 J0JDC0000045 IC FILTER L47 J0JDC0000045 IC FILTER L47 J0JDC0000045 IC FILTER R3 ERJ2GEJ102 IK R7 ERJ2GEJ122 1.2k R8 ERJ2GEJ101 100 R20 ERJ2GEJ100 10 R21 ERJ2GEJ101 100 R22 ERJ2GEJ101 100 R23 ERJ2GEJ101 100 R23 ERJ2GEJ101 100 R24 ERJ2GEJ101 100 R35 ERJ2GEJ101 100 R45 ERJ2GEJ103 100 R45 ERJ2GEJ103 100 R45 ERJ2GEJ103 100 R50 ERJ2GEJ103 100 R51 ERJ2GEJ103 100 R52 ERJ2GEJ103 100 R53 ERJ2GEJ103 100 R54 ERJ2GEJ103 100 R55 ERJ2GEJ103 100 R64 ERJ2GEJ103 100 R65 ERJ2GEJ103 100 R66 ERJ2GEJ103 100 R67 ERJ2GEJ103 100 R68 ERJ2GEJ103 100 R69 ERJ2GEJ103 100 R60 ERJ2GEJ103 100 R61 ERJ2GEJ103 100 R62 ERJ2GEJ103 100 R63 ERJ2GEJ103 100 R64 ERJ2GEJ103 100 R65 ERJ2GEJ103 100 R66 ERJ2GEJ103 100 R67 ERJ2GEJ103 100 R68 ERJ2GEJ103 100 R69 ERJ2GEJ103 100 R60 ERJ2GEJ103 100 R61 ERJ2GEJ103 100 R62 ERJ2GEJ103 100 R63 ERJ2GEJ104 100 R64 ERJ2GEJ105 IK R73 ERJ2GEJ800 82 R74 ERJ2GEJ800 0 R221 ERJ2GED800 0 R221 ERJ2GED800 0 R223 ERJ2GED800 0 R231 ERJ2GEJ824 8200 R232 ERJ2GEJ104 100 R805 ERJ2GEJ105 IM R331 ERJ2GEJ824 8200 R330 ERJ2GEJ105 IM R331 ERJ2GEJ821 220 R807 ERJ2GEJ211 100 R806 ERJ2GEJ21 220 R807 ERJ2GEJ211 220 CCAPACITORS) C1 F2A0J3310067 330 C2 F2AJ3310067 330 C2 F2AJ3310067 330 C2 F2AJ3310067 330 C3 ECULIAIOSKBY 1 C10 ECUVIAIOSKBY 1 C11 ECULIAIOSKBY 1 C12 ECULIAIOSKBY 1 C12 ECULIAIOSKBY 1 C13 ECUELHIOODCQ 10p C44 ECUELHIOODCQ 10p C44 ECUELHIOODCQ 10p C44 ECUELHIOODCQ 10p C45 ECUVIAIOSKBY 1 C45 ECUELHIOODCQ 10p C46 ECUELHIOODCQ 10p C47 ECUVIAIOSKBY 1 C52 EQUVIAIOSKBY 1 C52 EQUVIAIOSKBY 1 C53 EQUVIAIOSKBY 1 C55 ECUVIAIOSKBY | | | | | | | RA61 D1H422120001 RESISTOR ARRAY RA800 D1H410220001 RESISTOR ARRAY (IC FILTERS) L46 J0,DC0000045 IC FILTER L47 J0,DC0000045 IC FILTER (RESISTORS) R3 ERJZGEJ102 Ik R7 ERJZGEJ122 1.2k R8 ERJZGEJ101 100 R20 ERJZGEJ101 100 R21 ERJZGEJ102 Ik R27 ERJZGEJ102 Ik R27 ERJZGEJ102 Ik R28 ERJZGEJ101 IO0 R29 ERJZGEJ101 IO0 R20 ERJZGEJ101 IO0 R45 ERJZGEJ103 IOk R51 ERJZGEJ101 IOO R45 ERJZGEJ103 IOk R51 ERJZGEJ103 IOk R51 ERJZGEJ103 IOk R52 ERJZGEJ102 Ik R52 ERJZGEJ103 IOk R54 ERJZGEJ103 IOk R55 ERJZGEJ102 Ik R66 ERJZGEJ103 IOk R67 ERJZGEJ103 IOK R68 ERJZGEJ103 IOK R68 ERJZGEJ103 IOK R69 ERJZGEJ104 IOO R64 ERJZGEJ103 IOK R66 ERJZGEJ103 IOK R67 ERJZGEJ104 IOO R68 ERJZGEJ103 IOK R69 ERJZGEJ103 IOK R60 ERJZGEJ103 IOK R61 ERJZGEJ103 IOK R62 ERJZGEJ103 IOK R63 ERJZGEJ103 IOK R64 ERJZGEJ103 IOK R65 ERJZGEJ103 IOK R66 ERJZGEJ103 IOK R67 ERJZGEJ104 IK R73 ERJZGEJ105 IK R73 ERJZGEJ105 IK R811 ERJZGEJ105 IK R821 ERJZGEJ104 IOO R221 ERJZGEJ104 IX R830 ERJZGEJ104 IX R831 ERJZGEJ104 IX R831 ERJZGEJ104 IX R831 ERJZGEJ105 IM ERJZGEJ0105 IM R832 ERJZGEJ0105 IM R833 R834 ERJZGEJ0105 IM R835 ERJZGEJ0105 IM R836 ERJZGEJ0105 IM R837 ERJZGEJ0105 IM R838 ERJZGEJ0105 IM R839 ERJZGEJ0105 IM R83 | | | | | | | RA800 D1H410220001 RESISTOR ARRAY (IC FILTER) L46 JOJDCO000045 IC FILTER L47 JOJDCO000045 IC FILTER (RESISTORS) R3 ERJZGEJ102 IK R7 ERJZGEJ122 1.2k R8 ERJZGEJ101 100 R20 ERJZGEJ101 100 R21 ERJZGEJ102 IK R27 ERJZGEJ821 820 R30 ERJZGEJ102 IK R31 ERJZGEJ101 100 R45 ERJZGEJ101 100 R45 ERJZGEJ101 100 R45 ERJZGEJ101 100 R50 ERJZGEJ101 100 R51 ERJZGEJ101 100 R51 ERJZGEJ101 100 R51 ERJZGEJ101 100 R51 ERJZGEJ101 IN0 R52 ERJZGEJ102 IK R53 ERJZGEJ103 INC R54 ERJZGEJ103 INC R55 ERJZGEJ103 INC R64 ERJZGEJ103 INC R65 ERJZGEJ103 INC R66 ERJZGEJ103 INC R67 ERJZGEJ103 INC R68 ERJZGEJ103 INC R69 ERJZGEJ103 INC R60 ERJZGEJ103 INC R61 ERJZGEJ103 INC R62 ERJZGEJ103 INC R63 ERJZGEJ103 INC R64 ERJZGEJ103 INC R65 ERJZGEJ100 INC R66 ERJZGEJ100 INC R67 ERJZGEJ100 INC R68 ERJZGEJ100
INC R68 ERJZGEJ100 INC R69 ERJZGEJ100 INC R60 ERJZGEJ100 INC R73 ERJZGEJ800 INC R74 ERJZGEJ800 INC R225 ERJZGEN00 INC R225 ERJZGEN00 INC R231 ERJZGEJ824 820K R232 ERJZGEJ824 820K R232 ERJZGEJ373X ZYK R881 ERJZGEJZ73X ZYK R881 ERJZGEJZ73X ZYK R881 ERJZGEJZ73X ZYK R881 ERJZGEJZ73X ZYK R891 R89 | | RA40 | EXB28V103 | RESISTOR ARRAY | | | L46 | | RA61 | D1H422120001 | RESISTOR ARRAY | | | L46 | | RA800 | D1H410220001 | RESISTOR ARRAY | | | L47 | | | | (IC FILTERS) | | | R3 ERJZGEJ102 1k R7 ERJZGEJ101 100 R20 ERJZGEJ101 100 R21 ERJZGEJ102 1k R22 ERJZGEJ102 1k R23 ERJZGEJ102 1k R27 ERJZGEJ821 820 R28 ERJZGEJ821 820 R30 ERJZGEJ821 820 R30 ERJZGEJ101 100 R45 ERJZGEJ101 100 R45 ERJZGEJ103 10k R45 ERJZGEJ103 10k R45 ERJZGEJ103 10k R51 ERJZGEJ103 10k R51 ERJZGEJ103 10k R52 ERJZGEJ103 10k R53 ERJZGEJ103 10k R54 ERJZGEJ103 10k R55 ERJZGEJ103 10k R56 ERJZGEJ103 10k R67 ERJZGEJ103 10k R68 ERJZGEJ103 10k R69 ERJZGEJ103 10k R60 ERJZGEJ103 10k R61 ERJZGEJ103 10k R62 ERJZGEJ103 10k R63 ERJZGEJ103 10k R64 ERJZGEJ103 10k R65 ERJZGEJ103 10k R66 ERJZGEJ103 10k R66 ERJZGEJ100 1k R73 ERJZGEJ103 10k R66 ERJZGEJ100 1k R73 ERJZGEJ103 10k R74 ERJZGEJ100 1k R75 ERJZGEJ100 1k R78 ERJZGEJ100 1k R79 ERJZGEJ80 82 R203 DOGA563ZA006 56k R215 ERJZGED00 0 R225 ERJZGEJ00 0 R225 ERJZGEJ00 0 R221 ERJZGEJR20 82 R232 ERJZGEJR20 82 R232 ERJZGEJR20 82 R232 ERJZGEJR20 10 R231 ERJZGEJR20 10 R231 ERJZGEJR20 10 R330 ERJZGEJ105X 1M R331 ERJZGEJ73X 27k R332 ERJZGEJ73X 27k R801 ERJZGEJ73X 27k R801 ERJZGEJ73X 27k R801 ERJZGEJ721 220 R807 ERJZGEJ721 220 R807 ERJZGEJZ21 220 R807 ERJZGEJZ21 220 R807 ERJZGEJZ21 220 R807 ERJZGEJZ21 220 C11 ECUELALOKBEV 1 C12 EPQCUVOJIO6KB 10 C13 ECUELALOKBEV 0.1 C14 ECUELALOKBEV 0.1 C15 ECUELALOKBEV 1 C44 ECUELALOKBEV 0.1 C45 ECUELALOKBEV 0.1 C46 ECUELALOKBEV 0.1 C47 ECUELALOKBEV 0.1 C48 ECUELALOKBEV 0.1 C49 ECUELALOKBEV 0.1 C49 ECUELALOKBEV 0.1 C40 ECUELALOKBEV 0.1 C41 ECUELALOKBEV 0.1 C42 ECUELALOKBEV 0.1 C43 ECUELALOKBEV 0.1 C44 ECUELALOKBEV 0.1 C45 ECUELALOKBEV 0.1 C46 ECUELALOKBEV 0.1 C47 ECUELALOKBEV 0.1 C48 ECUELALOKBEV 0.1 C49 ECUELALOKBEV 0.1 C49 ECUELALOKBEV 0.1 C40 ECUELALOKBEV 0.1 C41 ECUELALOKBEV 0.1 C42 ECUELALOKBEV 0.1 C43 ECUELALOKBEV 0.1 C44 ECUELALOKBEV 0.1 C45 ECUELALOKBEV 1 C46 ECUELALOKBEV 1 C55 | | L46 | | | | | R3 ERJ2GEJ102 1k R7 ERJ2GEJ102 1.2k R8 ERJ2GEJ101 100 R20 ERJ2GEJ100 10 R23 ERJ2GEJ102 1k R27 ERJ2GEJ102 1k R28 ERJ2GEJ821 820 R29 ERJ2GEJ821 820 R30 ERJ3GEYJ152 1.5k R31 ERJ2GEJ101 100 R45 ERJGRSVR16V 0.1 R45 ERJGRSVR16V 0.1 R50 ERJ2GEJ103 10k R51 ERJ2GEJ103 10k R51 ERJ2GEJ103 10k R51 ERJ2GEJ103 10k R51 ERJ2GEJ332 3.3k R54 ERJ2GEJ332 3.3k R54 ERJ2GEJ332 3.3k R54 ERJ2GEJ103 10k R65 ERJ2GEJ103 10k R66 ERJ2GEJ103 10k R67 ERJ2GEJ103 10k R68 ERJ2GEJ103 10k R69 ERJ2GEJ103 10k R60 ERJ2GEJ103 10k R60 ERJ2GEJ103 10k R60 ERJ2GEJ103 10k R61 ERJ2GEJ103 10k R62 ERJ2GEJ103 10k R63 ERJ2GEJ103 10k R64 ERJ2GEJ103 10k R65 ERJ2GEJ103 10k R66 ERJ2GEJ103 10k R66 ERJ2GEJ103 10k R67 ERJGEJ103 10k R88 ERJGEJ103 10k R89 ERJGEJ80 82 R74 R89 ERJGEJ80 82 R89 ERJGEJ80 82 R89 ERJGEJ80 82 R89 ERJGEJ80 82 R89 ERJGEJ80 83 R89 ERJGEJ90 | | L47 | J0JDC0000045 | IC FILTER | | | R7 ERJZGEJ102 1.2k R8 ERJZGEJ101 100 R20 ERJZGEJ100 10 R23 ERJZGEJ102 1k R27 ERJZGEJ821 820 R28 ERJZGEJ821 820 R28 ERJZGEJ821 820 R30 ERJZGEJ101 100 R45 ERJZGEJ101 100 R45 ERJZGEJ101 100 R45 ERJZGEJ101 100 R50 ERJZGEJ103 10k R51 ERJZGEJ103 10k R51 ERJZGEJ103 10k R51 ERJZGEJ103 10k R52 ERJZGEJ103 10k R53 ERJZGEJ103 10k R54 ERJZGEJ103 10k R55 ERJZGEJ103 10k R57 ERJZGEJ103 10k R58 ERJZGEJ103 10k R59 ERJZGEJ103 10k R51 ERJZGEJ103 10k R51 ERJZGEJ103 10k R52 ERJZGEJ103 10k R53 ERJZGEJ103 10k R54 ERJZGEJ103 10c R64 ERJZGEJ103 10c R64 ERJZGEJ103 10c R64 ERJZGEJ103 10c R66 ERJZGEJ103 10c R66 ERJZGEJ103 10c R67 ERJZGEJ101 100 R68 ERJZGEJ103 10c R68 ERJZGEJ103 10c R69 ERJZGEJ103 10c R60 ERJZGEJ103 10c R60 ERJZGEJ103 10c R61 ERJZGEJ103 10c R62 ERJZGEJ103 10c R62 ERJZGEJ103 10c R63 ERJZGEJ80 82 R74 ERJZGEJ80 82 R203 DGGA5632A006 56k R215 ERJZGEOR00 0 R225 ERJZGEOR00 0 R225 ERJZGEOR00 0 R225 ERJZGEJ434 430k R248 ERJZGEJ44 820k R231 ERJZGEJ614 820k R231 ERJZGEJ615 10c R830 ERJZGEJ105X 1M R331 ERJZGEJ261 10c R831 ERJZGEJ273X 27k R831 ERJZGEJ273X 27k R831 ERJZGEJ273X 27k R831 ERJZGEJ73X 27k R831 ERJZGEJ73X 27k R801 ERJZGEJ73X 27k R801 ERJZGEJ73X 27k R801 ERJZGEJ73 10c R805 ERJZGEJ101 10c R805 ERJZGEJ101 10c R805 ERJZGEJ101 10c R806 ERJZGEJ101 10c R807 ERJZGEJ21 22c R807 ERJZGEJ101 10c R806 ERJZGEJ21 22c R807 ERJZGEJ101 10c R10 ECULALOKEQ 0.1 C11 ECUELALOKEQ 0.1 C12 PQCUVOJ106KB 10 C13 ECUELALOKEQ 0.1 C14 ECUELALOKEQ 0.1 C15 ECUELALOKEQ 0.1 C16 ECULALOKEQ 0.1 C17 ECUELALOKEQ 0.1 C17 ECUELALOKEQ 0.1 C18 ECUELALOKEQ 0.1 C19 ECULALOKEQ 0.1 C19 ECULALOKEQ 0.1 C19 ECULALOKEQ 0.1 C19 ECULALOKEQ 0.1 C10 ECULALOKEQ 0.1 C11 ECUELALOKEQ 0.1 C12 ECUELALOKEQ 0.1 C13 ECUELALOKEQ 0.1 C14 ECUELALOKEQ 0.1 C15 ECUELALOKEQ 0.1 C16 ECULALOKEQ 0.1 C17 ECUELALOKEQ 0.1 C18 ECUELALOKEQ 0.1 C19 ECULALOKEQ ECUL | | | | · | | | R8 ERJZGEJ101 100 R20 ERJZGEJ102 1k R21 ERJZGEJ102 1k R27 ERJZGEJ821 820 R28 ERJZGEJ821 820 R30 ERJZGEJ152 1.5k R31 ERJZGEJ101 100 R45 ERJGESJT152 1.5k R31 ERJZGEJ101 100 R45 ERJGESJT10V 0.1 R50 ERJZGEJ103 10k R51 ERJGESJT10V 2.1 R52 ERJGEJ102 1k R53 ERJGEJ102 1k R53 ERJGEJ103 10k R54 ERJGEJ103 10k R55 ERJZGEJ103 10k R55 ERJZGEJ103 10k R64 ERJZGEJ103 10k R65 ERJZGEJ103 10k R66 ERJZGEJ103 10k R66 ERJZGEJ103 10k R66 ERJZGEJ103 10k R73 ERJGEJ103 10k R73 ERJGEJ103 10k R73 ERJGEJ103 10k R74 ERJZGEJ101 100 R64 ERJZGEJ10 100 R64 ERJZGEJ103 10k R75 ERJZGEJ104 1k R73 ERJZGEJ820 82 R74 ERJZGEJ820 82 R74 ERJZGEJ820 82 R22 ERJZGEJ820 82 R22 ERJZGEJ824 820k R215 ERJZGEOROO 0 R225 ERJZGEOROO 0 R225 ERJZGEOROO 0 R225 ERJZGEJ105X 1M R331 ERJZGEJ824 820k R330 ERJZGEJ105X 1M R331 ERJZGEJ105X 1M R331 ERJZGEJ73X 27k R332 ERJZGEJ73X 27k R332 ERJZGEJ73Y 27k R332 ERJZGEJ73Y 27k R331 ERJZGEJ261 100 R805 ERJZGEJ101 100 R805 ERJZGEJ101 100 R806 ERJZGEJ273X 27k R801 ERJZGEJ273Y 27k R801 ERJZGEJ273Y 27k R806 ERJZGEJ273Y 27k R807 ERJZGEJ407 47 R806 ERJZGEJ221 220 R807 ERJZGEJ25KB 1.2 C11 ECUELA104KBQ 0.1 C12 PQCUVOJ106KB 10 C13 ECUELA104KBQ 0.1 C14 ECUELA104KBQ 0.1 C44 ECUELA104KBQ 0.1 C45 ECUELA104KBQ 0.1 C46 ECUELA104KBQ 0.1 C47 ECUVIA105KBV 1 C49 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 | | | | | | | R20 ERJZGEJ100 10 R23 ERJZGEJ102 1k R27 ERJZGEJ821 820 R28 ERJZGEJ821 820 R30 ERJZGEJ101 100 R45 ERJGEJ101 100 R45 ERJGEJ101 100 R45 ERJGEJ101 100 R50 ERJZGEJ103 10k R51 ERJZGEJ103 10k R51 ERJZGEJ103 10k R51 ERJZGEJ103 10k R52 ERJZGEJ103 10k R53 ERJZGEJ103 10k R55 ERJZGEJ102 1k R58 ERJZGEJ102 1k R68 ERJZGEJ103 10k R68 ERJZGEJ103 10k R68 ERJZGEJ101 100 R64 ERJZGEJ101 100 R66 ERJZGEJ102 1k R67 ERJZGEJ102 1k R68 ERJZGEJ102 1k R69 ERJZGEJ100 100 R60 ERJZGEJ100 100 R60 ERJZGEJ100 100 R60 ERJZGEJ100 100 R61 ERJZGEJ100 82 R73 ERJZGEJ820 82 R74 ERJZGEJ820 82 R74 ERJZGEJ820 82 R74 ERJZGEJ820 82 R74 ERJZGEJ824 820 R215 ERJZGEJ00 0 R225 ERJZGEOROO 0 R225 ERJZGEOROO 0 R226 ERJZGEJ105X 1M R330 ERJZGEJ15X 1M R331 ERJZGEJ73X 27k R801 ERJZGEJ101 100 R805 ERJZGEJ101 100 R805 ERJZGEJ101 100 R807 R808 ERJZGEJ101 100 R809 ERJZGEJ101 100 R809 ERJZGEJ101 100 R800 R8 | | | | | | | R23 ERJ2GEJ102 1k R27 ERJ2GEJ821 820 R28 ERJ2GEJ821 820 R30 ERJ3GEYJ152 1.5k R31 ERJ2GEJ101 100 R45 ERJ2GEJ101 100 R45 ERJ2GEJ103 10k R51 ERJ2GEJ103 10k R51 ERJ2GEJ103 10k R51 ERJ2GEJ103 10k R52 ERJ2GEJ102 1k R53 ERJ2GEJ332 3.3k R54 ERJ2GEJ103 10k R55 ERJ2GEJ102 1k R63 ERJ2GEJ102 1k R64 ERJ2GEJ103 10k R65 ERJ2GEJ102 1k R66 ERJ2GEJ103 10k R66 ERJ2GEJ101 100 R66 ERJ2GEJ102 1k R73 ERJ2GEJ820 82 R74 ERJ2GEJ02 1k R73 ERJ2GEJ820 82 R74 ERJ2GEJ820 82 R203 DGGA563ZA006 56k R215 ERJ2GEOR00 0 R225 ERJ2GEOR00 0 R225 ERJ2GEOR00 0 R231 ERJ2GEJ824 820k R232 ERJ2GEJ824 820k R232 ERJ2GEJ73X 27k R331 ERJ2GEJ73X 27k R331 ERJ2GEJ73X 27k R331 ERJ2GEJ73X 27k R331 ERJ2GEJ73X 27k R801 ERJ2GEJ6101 100 R805 ERJ2GEJ101 100 R805 ERJ2GEJ21 220 (CAPACITORS) C1 F2A0J3310067 330 C2 FJ2A0J310067 330 C1 C2 F2A0J3310067 330 C1 ECUILAIOKEQ 0.1 C13 ECUILAIOKEQ 0.1 C14 ECUILAIOKEQ 0.1 C15 ECUILAIOKEQ 0.1 C16 ECUILAIOKEQ 0.1 C17 ECUILAIOKEQ 0.1 C18 ECUILAIOKEQ 0.1 C19 ECUILAIOKEQ 0.1 C19 ECUILAIOKEQ 0.1 C19 ECUILAIOKEQ 0.1 C19 ECUILAIOKEQ 0.1 C10 ECUILAIOKEQ 0.1 C14 ECUILAIOKEQ 0.1 C15 ECUILAIOKEQ 0.1 C16 ECUILAIOKEQ 0.1 C17 ECUILAIOKEQ 0.1 C18 ECUILAIOKEQ 0.1 C19 | | | | | | | R27 ERJZGEJ821 820 R28 ERJZGEJ152 1.5k R30 ERJJGEYJ152 1.5k R31 ERJZGEJ101 100 R45 ERJGESJ101 100 R45 ERJGESJ103 10k R51 ERJZGEJ103 10k R51 ERJZGEJ102 1k R52 ERJZGEJ102 1k R53 ERJZGEJ102 1k R54 ERJZGEJ102 1k R55 ERJZGEJ102 1k R55 ERJZGEJ102 1k R65 ERJZGEJ102 1k R66 ERJZGEJ102 1k R67 ERJZGEJ102 1k R68 ERJZGEJ102 1k R68 ERJZGEJ102 1k R69 ERJZGEJ102 1k R60 ERJZGEJ102 1k R71 ERJZGEJ103 10k R66 ERJZGEJ102 1k R73 ERJZGEJ620 82 R74 ERJZGEJ620 82 R74 ERJZGEJ820 80 R231 ERJZGEJ824 820k R232 ERJZGEJ821 820k R232 ERJZGEJ000 0 R330 ERJZGEJ105X 1M R331 ERJZGEJ621 10 R331 ERJZGEJ621 273X 27k R332 ERJZGEJ105X 1M R3331 ERJZGEJ62105X 1M R3331 ERJZGEJ273X 27k R801 ERJZGEJ273X 27k R801 ERJZGEJ2710 47 R806 ERJZGEJ2710 47 R806 ERJZGEJ2710 47 R806 ERJZGEJ221 220 (CAPACITORS) C1 F2A0J3310067 330 C2 FZGEJZEJ221 220 (CAPACITORS) C1 F2A0J3310067 330 C2 ERJGEJ221 220 CAPACITORS) C1 ECUVIA105KBV 1 C10 ECUVIA225KB 2.2 C11 ECUEIA104KBQ 0.1 C12 PCUVOJ106KB 10 C13 ECUEIA104KBQ 0.1 C14 ECUEIA104KBQ 0.1 C15 ECUEIA104KBQ 0.1 C44 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIH100DCQ 10p C47 ECUVIA105KBV 1 C49 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUEIA104KBQ 0.1 C44 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIH100DCQ 10p C47 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 | | | | | | | R28 ERJ2GEJ821 820 R30 ERJ3GEYJ152 1.5k R31 ERJ2GEJ101 100 R45 ERJ6RSJR10V 0.1 R50 ERJ2GEJ103 10k R51 ERJ2GEJ103 10k R51 ERJ2GEJ102 1k S52 ERJ2GEJ102 1k S53 ERJ2GEJ102 1k R55 ERJ2GEJ102 1k R63 ERJ2GEJ102 1k R66 ERJ2GEJ101 100 R64 ERJ2GEJ103 10k R65 ERJ2GEJ102 1k R66 ERJ2GEJ102 1k R673 ERJ2GEJ102 1k R686 ERJ2GEJ100 10c R686 ERJ2GEJ100 10c R686 ERJ2GEJ100 1c
R73 ERJ2GE-100 1c R73 ERJ2GE-100 R2 R74 ER12GEJ820 82 R74 ER12GEJ820 82 R74 ER12GEJ820 82 R75 ERJ2GEOR00 0 R225 ERJ2GEOR00 0 R221 ERJ2GEOR00 0 R221 ERJ2GEOR00 0 R231 ERJ2GEJ824 820k R232 ERJ2GEJ105X 1M R330 ERJ2GEJ105X 1M R331 ERJ2GEJ273X 27k R332 ERJ2GEJ705X 1M R331 ERJ2GEJ273X 27k R332 ERJ2GEJ105 100 R805 ERJ2GEJ101 100 R806 ERJ2GEJ21 220 (CAPACITORS) C1 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUE1A104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUE1A104KBQ 0.1 C14 ECUE1A104KBQ 0.1 C15 ECUE1A104KBQ 0.1 C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1A104KBQ 0.1 C47 ECUE1A104KBQ 0.1 C48 ECUE1A104KBQ 0.1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1A104KBQ 0.1 C47 ECUE1A104KBQ 0.1 C48 ECUE1A104KBQ 0.1 C49 ECUV1A105KBV 1 C50 | | | | | | | R30 ERJ3GEYJ152 1.5k R31 ERJZGEJ101 100 R45 ERJ6RSJR10V 0.1 R50 ERJZGEJ33 10k R51 ERJZGEJ102 1k S R52 ERJZGEJ102 1k S R53 ERJZGEJ332 3.3k R54 ERJZGEJ103 10k R55 ERJZGEJ102 1k R63 ERJZGEJ102 1k R63 ERJZGEJ101 100 R64 ERJZGEJ103 10k R66 ERJZGEJ101 100 R66 ERJZGEJ102 1k R73 ERJZGEJ820 82 R74 ERJZGEJ820 82 R74 ERJZGEJ820 82 R74 ERJZGEJ820 80 R215 ERJZGEOR00 0 R225 ERJZGEOR00 0 R231 ERJZGEJ824 820k R232 ERJZGEJ824 820k R232 ERJZGEJ824 820k R231 ERJZGEJ824 820k R232 ERJZGEJ824 820k R232 ERJZGEJ824 820k R232 ERJZGEJ824 820k R232 ERJZGEJ73X 77k R331 ERJZGEJ73X 77k R331 ERJZGEJ773X 77k R801 ERJZGEJ101 100 R805 ERJZGEJ101 100 R805 ERJZGEJ101 100 R805 ERJZGEJ101 100 R806 ERJZGEJ101 100 R807 ERJZGEJ101 100 R808 ERJZGEJ101 100 R809 ERJZGEJ101 100 R800 ERJZGEJ101 100 R800 ERJZGEJ101 100 R800 ERJZGEJ101 100 R800 ERJZGEJ101 100 R801 ERJZGEJ784 220 CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C3 ECUVIA105KBV 1 C10 ECUVIA25KB 2.2 C11 ECUBIA104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUEIA104KBQ 0.1 C14 ECUEIA104KBQ 0.1 C15 ECUEIA104KBQ 0.1 C44 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIA104KBQ 0.1 C47 ECUVIA105KBV 1 C49 C50 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 C55 | | | | | | | R31 ERJ2GEJ101 100 R45 ERJGRSJR10V 0.1 R50 ERJ2GEJ103 10k R51 ERJ2GEJ102 1k R52 ERJ2GEJ102 1k R53 ERJ2GEJ322 3.3k R54 ERJ2GEJ103 10c R55 ERJ2GEJ101 10c R55 ERJ2GEJ101 10c R64 ERJ2GEJ103 10c R64 ERJ2GEJ103 10c R64 ERJ2GEJ103 10c R66 ERJ2GEJ101 10c R66 ERJ2GEJ102 1k R73 ERJ2GEJ820 82 R74 ERJ2GEJ820 82 R74 ERJ2GEJ820 82 R75 ERJ2GEJ820 R2 R203 DOGA563ZA006 56c R215 ERJ2GEJ820 R2 R215 ERJ2GEDR00 0 R225 ERJ2GEJ824 820c R231 ERJ2GEJ824 820c R330 ERJ2GEJ824 820c R330 ERJ2GEJ824 R20c R330 ERJ2GEJ824 R20c R330 ERJ2GEJ824 R20c R330 ERJ2GEJ82105X IM R331 ERJ2GEJ82J73X 27c R801 ERJ2GEJ82J73X 27c R801 ERJ2GEJ82J73X 27c R801 ERJ2GEJ821 100 R805 ERJ2GEJ101 10c R805 ERJ2GEJ101 10c R805 ERJ2GEJ721 22c CAPACITORS C1 F2A0J3310067 330 C2 F2A0J3310067 330 C3 ECUEIALO4KBQ 0.1 C12 PQCUVOJ106KB 10 C13 ECUEIALO4KBQ 0.1 C14 ECUEIALO4KBQ 0.1 C15 ECUEIALO4KBQ 0.1 C44 ECUEIALO4KBQ 0.1 C45 ECUEIALO4KBQ 0.1 C45 ECUEIALO4KBQ 0.1 C46 ECUEIALO4KBQ 0.1 C47 ECUEIALO4KBQ 0.1 C48 ECUEIALO4KBQ 0.1 C49 ECUEIALO4KBQ 0.1 C49 ECUEIALO4KBQ 0.1 C49 ECUEIALO4KBQ 0.1 C45 ECUEIALO4KBQ 0.1 C46 ECUEIALO4KBQ 0.1 C47 ECUVIALO5KBV 1 C49 ECUEIALO5KBV 1 C49 ECUVIALO5KBV 1 C50 ECUVIALO5KBV 1 C51 ECUVIALO5KBV 1 C52 PQCUVOJIO6KB 10 C53 PQCUVOJIO6KB 10 C53 PQCUVOJIO6KB 10 C54 ECUVIALO5KBV 1 C55 | | | | | | | R45 ERJ6RSJR10V 0.1 R50 ERJZGEJ103 10k R51 ERJ2GEJ471 470 S R52 ERJZGEJ102 1k S R53 ERJ2GEJ332 3.3k R54 ERJZGEJ103 10k R55 ERJZGEJ101 10k R65 ERJZGEJ101 100 R664 ERJZGEJ102 1k R63 ERJZGEJ102 1k R66 ERJZGEJ102 1k R73 ERJZGEJ102 1k R73 ERJZGEJ820 82 R74 ERJZGEJ820 82 R74 ERJZGEJ820 82 R203 D0GA563ZA006 56k R215 ERJZGEOR00 0 R225 ERJZGEOR00 0 R231 ERJZGEJ824 820k R231 ERJZGEJ824 820k R232 ERJZGEJ824 820k R233 ERJZGEJ824 820k R333 ERJZGEJ8284 820k R331 ERJZGEJ824 820k R333 ERJZGEJ824 820k R331 ERJZGEJ824 820k R332 ERJZGEJ824 820k R333 ERJZGEJ105X 1M R331 ERJZGEJ681 680 R801 ERJZGEJ105X 1M R801 ERJZGEJ273X 27k R801 ERJZGEJ273X 27k R801 ERJZGEJ2101 100 R805 ERJZGEJ101 100 R806 ERJZGEJ221 220 R807 ERJZGEJ221 220 R807 ERJZGEJ221 220 C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUE1A104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUEIH100DCQ 10p C44 ECUEIH100DCQ 10p C47 ECUVIA105KBV 1 C49 ECUVIA105KBV 1 C49 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 | | | | | | | R50 ERJ2GEJ103 10k R51 ERJZGEJ471 470 S R52 ERJ2GEJ102 1k R53 ERJZGEJ332 3.3k R54 ERJ2GEJ103 10k R55 ERJZGEJ102 1k R63 ERJZGEJ101 100 R64 ERJZGEJ101 100 R66 ERJZGEJ102 1k R73 ERJZGEJ102 1k R73 ERJZGEJ820 82 R74 ERJZGEJ820 82 R74 ERJZGEJ820 82 R203 DOGAS63ZA006 56k R215 ERJZGEJ820 80 R225 ERJZGEDR00 0 R225 ERJZGEDR00 0 R231 ERJZGEJ824 820k R231 ERJZGEJ824 820k R232 ERJZGEJ824 820k R330 ERJZGEJ824 820k R330 ERJZGEJ824 800k R248 ERJZGEJ05X 1M R331 ERJZGEJ824 800k R330 ERJZGEJ73X 27k R332 ERJZGEJ73X 27k R332 ERJZGEJ7105X 1M R331 ERJZGEJ273X 27k R801 ERJZGEJ2101 100 R805 ERJZGEJ2101 100 R805 ERJZGEJ2101 100 R806 ERJZGEJ2101 100 R807 ERJZGEJ21 220 (CAPACITORS) C1 F2A0J3310067 330 C2 F2AUJ3310067 330 C3 ECUVIA105KBV 1 C10 ECUVIA225KB 2.2 C11 ECUEIA104KBQ 0.1 C17 ECUEIH100DCQ 10p C18 ECUEIA104KBQ 0.1 C17 ECUEIH100DCQ 10p C18 ECUEIA104KBQ 0.1 C44 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIH100DCQ 10p C44 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIH100DCQ 10p C47 ECUVIA105KBV 1 C49 ECUVIA105KBV 1 C49 ECUVIA105KBV 1 C49 ECUVIA105KBV 1 C49 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 | | | | | | | R52 ERJ2GEJ102 1k S R53 ERJ2GEJ332 3.3k R54 ERJ2GEJ103 10k R55 ERJ2GEJ102 1k R63 ERJ2GEJ101 100 R64 ERJ2GEJ103 10k R66 ERJ2GEJ102 1k R73 ERJ2GEJ20 1k R73 ERJ2GEJ820 82 R74 ERJ2GEJ820 82 R74 ERJ2GEJ820 82 R203 D0GA563ZA006 56k R215 ERJ2GE0R00 0 R2215 ERJ2GE0R00 0 R231 ERJ2GEJ824 820k R232 ERJ2GEJ824 820k R232 ERJ2GEJ824 820k R330 ERJ2GEJ734 430k R248 ERJ2GEJ824 820k R331 ERJ2GEJ834 430k R248 ERJ2GEJ015X 1M R331 ERJ2GEJ73X 27k R801 ERJ2GEJ73X 27k R802 ERJ2GEJ770 47 R806 ERJ2GEJ721 220 R807 ERJ2GEJ21 220 C(APACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUVIA105KBV 1 C10 ECUVIA25KB 2.2 C11 ECUELH100DCQ 10p C18 ECUELH100DCQ 10p C18 ECUELH100DCQ 10p C18 ECUELH10DCQ 10p C44 ECUELH10DCQ 10p C44 ECUELH10DCQ 10p C45 ECUVIA105KBV 1 C46 ECUELH10DCQ 10p C47 ECUELH10DCQ 10p C48 ECUELH10DCQ 10p C49 ECUVIA105KBV 1 C49 ECUVIA105KBV 1 C49 ECUVIA105KBV 1 C49 ECUELH10DCQ 10p C47 ECUELH10DCQ 10p C48 ECUELH10DCQ 10p C49 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 C55 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 | | R50 | ERJ2GEJ103 | 10k | | | R53 ERJ2GEJ332 3.3k R54 ERJ2GEJ103 10k R55 ERJ2GEJ101 100 R64 ERJ2GEJ103 10k R66 ERJ2GEJ102 1k R73 ERJ2GEJ20 1k R74 ERJ2GEJ820 82 R74 ERJ2GEJ820 82 R74 ERJ2GEJ820 0 R215 ERJ2GEOR00 0 R225 ERJ2GEOR00 0 R231 ERJ2GEJ824 820k R231 ERJ2GEJ824 820k R232 ERJ2GEJ825 1M R330 ERJ2GEJ105X 1M R331 ERJ2GEJ105X 1M R331 ERJ2GEJ105X 1M R331 ERJ2GEJ105X 1M R331 ERJ2GEJ105X 1M R332 ERJ2GEJ105X 27k R801 ERJ2GEJ681 680 R802 ERJ2GEJ73X 27k R801 ERJ2GEJ681 680 R802 ERJ2GEJ101 100 R805 ERJ2GEJ21 220 CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUV1A105KEV 1 C10 ECUV125KB 2.2 C11 ECUELH100DCQ 10p C18 ECUELH10DCQ 10p C18 ECUELH10DCQ 10p C35 ECUELH10DCQ 10p C44 ECUELH10DCQ 10p C45 ECUELH10DCQ 10p C46 ECUELH10DCQ 10p C47 ECUELH10DCQ 10p C47 ECUELH10DCQ 10p C48 ECUELH10DCQ 10p C49 ECUV1A105KEV 1 C40 ECUELA104KBQ 0.1 C41 ECUELH10DCQ 10p C42 ECUELH10DCQ 10p C43 ECUELH10DCQ 10p C44 ECUELH10DCQ 10p C45 ECUELH10DCQ 10p C46 ECUELH10DCQ 10p C47 ECUELH10DKEV 1 C49 ECUV1A105KEV 1 C50 ECUV1A105KEV 1 C51 ECUV1A105KEV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | R51 | ERJ2GEJ471 | 470 | S | | R54 ERJ2GEJ103 10k R55 ERJ2GEJ102 1k R63 ERJ2GEJ101 100 R64 ERJ2GEJ102 1k R76 ERJ2GEJ102 1k R77 ERJ2GEJ202 1k R77 ERJ2GEJ820 82 R74 ERJ2GEJ820 82 R203 DOGA563ZA006 56k R215 ERJ2GEORO0 0 R225 ERJ2GEORO0 0 R231 ERJ2GEJ824 820k R332 ERJ2GEJ824 830k R333 ERJ2GEJ824 830k R331 ERJ2GEJ824 830k R331 ERJ2GEJ8273X 27k R332 ERJ2GEJ105X 1M R331 ERJ2GEJ73X 27k R832 ERJ2GEJ101 100 R805 ERJ2GEJ101 100 R806 ERJ2GEJ101 100 R806 ERJ2GEJ21 220 R807 ERJ2GEJ21 220 R807 ERJ2GEJ221 220 R807 ERJ2GEJ221 220 C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A25KB 2.2 C11 ECUELA104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUELA104KBQ 0.1 C43 ECUELA104KBQ 0.1 C44 ECUELA104KBQ 0.1 C45 ECUELA104KBQ 0.1 C46 ECUELA104KBQ 0.1 C47 ECUELA104KBQ 0.1 C48 ECUELA104KBQ 0.1 C49 ECUV1A105KBV 1 C40 ECUELA104KBQ 0.1 C41 ECUELA104KBQ 0.1 C42 F2CELA104KBQ 0.1 C43 ECUELA104KBQ 0.1 C44 ECUELA104KBQ 0.1 C45 ECUELA104KBQ 0.1 C46 ECUELA104KBQ 0.1 C47 ECUELALOBKBV 1 C48 ECUELALOBKBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C47 ECUELALOBKBV 1 C48 ECUELALOBKBV 1 C51 ECUELALOBKBV 1 C52 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 | | R52 | ERJ2GEJ102 | 1k | S | | R55 ERJ2GEJ102 1k R63 ERJ2GEJ101 100 R64 ERJ2GEJ103 10k R66 ERJ2GEJ102 1k R73 ERJ2GEJ820 82 R74 ERJ2GEJ820 82 R74 ERJ2GEJ820 82 R203 DOGA563ZA006 56k R215 ERJ2GEOR00 0 R225 ERJ2GEOR00 0 R231 ERJ2GEJ824 820k R232 ERJ2GEJ434X 430k R248 ERJ2GEJ55X IM R330 ERJ2GEJ105X IM R331 ERJ2GEJ273X 27k R332 ERJ2GEJ273X 27k R332 ERJ2GEJ73X 27k R801 ERJ2GEJ681 680 R802 ERJ2GEJ101 100 R805 ERJ2GEJ210 200 R806 ERJ2GEJ21 220 R807 ERJ2GEJ21 220 R807 ERJ2GEJ221 220 CCAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C2 F2A0J3310067 330 C1 ECUVIA105KBV 1 C10 ECUVIA25KB 2.2 C11 ECUELA104KBQ 0.1 C12 PQCUVOJ106KB 10 C13 ECUELH100DCQ 10p C18 ECUELH100DCQ 10p C18 ECUELH100DCQ 10p C18 ECUELH100DCQ 10p C19 C44 ECUELH104KBQ 0.1 C45 ECUELH100DCQ 10p C44 ECUELH104KBQ 0.1 C45 ECUELH100DCQ 10p C47 ECUELH100DCQ 10p C44 ECUELH104KBQ 0.1 C45 ECUELH100DCQ 10p C47 ECUELH104KBQ 0.1 C46 ECUELH104KBQ 0.1 C47 ECUELH100DCQ 10p C47
ECUELH104KBQ 0.1 C48 ECUELH100DCQ 10p C49 ECUELH105KBV 1 C49 ECUELH105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 | | R53 | ERJ2GEJ332 | 3.3k | | | R63 ERJ2GEJ101 100 R64 ERJ2GEJ103 10k R66 ERJ2GEJ102 1k R73 ERJ2GEJ820 82 R74 ERJ2GEJ820 82 R74 ERJ2GEJ820 82 R203 DOGA563ZA006 56k R215 ERJ2GEOR00 0 R225 ERJ2GEOR00 0 R231 ERJ2GEJ824 820k R232 ERJ2GEJ824 430k R248 ERJ2GEJ824 430k R330 ERJ2GEJ105X IM R331 ERJ2GEJ105X IM R331 ERJ2GEJ273X 27k R332 ERJ2GEJ273X 27k R801 ERJ2GEJ273X 27k R801 ERJ2GEJ273X 27k R801 ERJ2GEJ273X 27k R806 ERJ2GEJ210 100 R805 ERJ2GEJ210 100 R806 ERJ2GEJ21 220 CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C2 F2A0J3310067 330 C1 ECUVIA105KBV 1 C10 ECUVIA25KB 2.2 C11 ECUEIH100DCQ 10p C18 ECUEIH100DCQ 10p C18 ECUEIH100DCQ 10p C35 ECUEIH560JCQ 56p C40 ECUEIA104KBQ 0.1 C43 ECUEIH100DCQ 10p C44 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIA104KBQ 0.1 C47 ECUEIH100DCQ 10p C48 ECUEIH100DCQ 10p C49 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIA104KBQ 0.1 C47 ECUEIA104KBQ 0.1 C48 ECUEIH100DCQ 10p C49 ECUEIA104KBQ 0.1 C49 ECUEIA104KBQ 0.1 C40 ECUEIA104KBQ 0.1 C41 ECUEIA104KBQ 0.1 C42 ECUEIA104KBQ 0.1 C43 ECUEIH100DCQ 10p C44 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIA104KBQ 0.1 C47 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUVOJ106KB 10 | | R54 | ERJ2GEJ103 | 10k | | | R64 ERJ2GEJ103 10k R66 ERJ2GEJ102 1k R73 ERJ2GEJ820 82 R74 ERJ2GEJ820 82 R203 DOGA563ZA006 56k R215 ERJ2GEOR00 0 R225 ERJ2GEOR00 0 R231 ERJ2GEJ824 820k R232 ERJ2GEJ824 820k R232 ERJ2GEJ3434 430k R248 ERJ2GEJ35 1M R330 ERJ2GEJ15 1M R331 ERJ2GEJ73X 27k R332 ERJ2GEJ73X 27k R801 ERJ2GEJ681 680 R802 ERJ2GEJ101 100 R805 ERJ2GEJ210 100 R806 ERJ2GEJ21 220 R807 ERJ2GEJ221 220 CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUE1A104KBQ 0.1 C12 PQCOVOJ106KB 10 C13 ECUE1H100DCQ 10p C14 ECUE1A104KBQ 0.1 C15 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1H100DCQ 10p C44 ECUE1H10DCQ 10p C44 ECUE1H10DCQ 10p C45 ECUE1H10DCQ 10p C46 ECUE1H10DCQ 10p C47 ECUE1H10DCQ 10p C47 ECUE1H10DCQ 10p C48 ECUE1H10DCQ 10p C49 ECUE1A104KBQ 0.1 C40 ECUE1A104KBQ 0.1 C41 ECUE1A104KBQ 0.1 C42 ECUE1H10DCQ 10p C44 ECUE1H10DCQ 10p C44 ECUE1H10DCQ 10p C45 ECUE1H10DCQ 10p C46 ECUE1H10DCQ 10p C47 ECUEIH10DCQ ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUVOJ106KB 10 | | | | | | | R66 ERJZGEJ102 1k R73 ERJZGEJ820 82 R74 ERJZGEJ820 82 R203 DOGA56JZA006 56k R215 ERJZGEOR00 0 R225 ERJZGEOR00 0 R231 ERJZGEJ824 820k R232 ERJZGEJ824 820k R232 ERJZGEJ824 820k R233 ERJZGEJ105X 1M R330 ERJZGEJ105X 1M R331 ERJZGEJ273X 27k R332 ERJZGEJ273X 27k R332 ERJZGEJZ73X 27k R801 ERJZGEJS81 680 R802 ERJZGEJ210 100 R805 ERJZGEJ210 100 R806 ERJZGEJ21 220 R807 ERJZGEJ221 220 CCAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUVIA105KBV 1 C10 ECUVIA225KB 2.2 C11 ECUE1A104KBQ 0.1 C12 PQCUVOJ106KB 10 C13 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C18 ECUE1H10DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1H10DCQ 10p C46 ECUE1H10DCQ 10p C47 ECUE1H10DCQ 10p C48 ECUE1H10DCQ 10p C49 ECUVIA105KBV 1 C49 ECUVIA105KBV 1 C40 ECUE1A104KBQ 0.1 C41 ECUE1A104KBQ 0.1 C42 ECUE1H10DCQ 10p C44 ECUE1H10DCQ 10p C44 ECUE1H10DCQ 10p C44 ECUE1H10DCQ 10p C44 ECUE1H10DCQ 10p C45 ECUE1H10DCQ 10p C46 ECUE1H10DCQ 10p C47 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUVOJ106KB 10 | | | | | | | R73 | | | | | | | R74 ERJ2GEJ820 82 R203 D0GA563ZA006 56k R215 ERJ2GEOR00 0 R225 ERJ2GEOR00 0 R221 ERJ2GEJ824 820k R232 ERJ2GEJ434X 430k R248 ERJ2GEJ105X 1M R330 ERJ2GEJ105X 1M R331 ERJ2GEJ273X 27k R332 ERJ2GEJ273X 27k R801 ERJ2GEJ681 680 R802 ERJ2GEJ101 100 R805 ERJ2GEJ101 100 R806 ERJ2GEJ101 100 R807 ERJ2GEJ21 220 (CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C2 F2A0J31068B 10 C13 ECUE1A104KBQ 0.1 C17 ECUE1A104KBQ 0.1 C18 ECUE1H100DCQ 10p C18 ECUE1H10DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1A104KBQ 0.1 C47 ECUE1A104KBQ 0.1 C48 ECUE1H10DCQ 10p C49 ECUE1A104KBQ 0.1 C49 ECUE1A104KBQ 0.1 C40 ECUE1A104KBQ 0.1 C41 ECUE1A104KBQ 0.1 C42 ECUE1A104KBQ 0.1 C43 ECUE1H10DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1A104KBQ 0.1 C47 ECUE1A104KBQ 0.1 C48 ECUE1H10DCQ 10p C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C55 | | | | | | | R203 D0GA563ZA006 56k R215 ERJ2GEOR00 0 R225 ERJ2GEOR00 0 R231 ERJ2GEJ824 820k R232 ERJ2GEJ434X 430k R248 ERJ2GEOR00 0 R330 ERJ2GEJ105X IM R331 ERJ2GEJ273X 27k R332 ERJ2GEJ273X 27k R801 ERJ2GEJ273X 27k R801 ERJ2GEJ273X 27k R802 ERJ2GEJ101 100 R805 ERJ2GEJ101 100 R805 ERJ2GEJ210 120 (CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C2 F2A0J3310067 330 C1 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUE1A104KBQ 0.1 C12 EQUE1H100DCQ 10p C13 ECUE1H560JCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUV1A105KBV 0.1 C46 ECUE1A104KBQ 0.1 C47 ECUE1A104KBQ 0.1 C48 ECUE1H100DCQ 10p C49 ECUE1A104KBQ 0.1 C49 ECUE1A104KBQ 0.1 C40 ECUE1A104KBQ 0.1 C41 ECUE1A104KBQ 0.1 C42 ECUE1A104KBQ 0.1 C43 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1A104KBQ 0.1 C47 ECUE1A104KBQ 0.1 C48 ECUE1H100DCQ 10p C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C55 | | | | | | | R215 ERJ2GEOROO 0 R225 ERJ2GEOROO 0 R231 ERJ2GEJ824 820k R232 ERJ2GEJ824 430k R238 ERJ2GEJ05X IM R330 ERJ2GEJ105X IM R331 ERJ2GEJ273X 27k R332 ERJ2GEJ273X 27k R801 ERJ2GEJ681 680 R802 ERJ2GEJ101 100 R805 ERJ2GEJ40 47 R806 ERJ2GEJ21 220 R807 ERJ2GEJ221 220 R807 ERJ2GEJ221 220 C1 F2A0J3310067 330 C2 F2AJ3310067 330 C2 F2AJ3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C35 ECUE1H60JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1H10DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1H10DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1H10DCQ 10p C47 ECUE1H10DCQ 10p C48 ECUE1H10DCQ 10p C49 ECUE1A104KBQ 0.1 C49 ECUV1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 ECUE1A104KBQ 0.1 C44 ECUE1A104KBQ 0.1 C55 ECUV1A105KBV 1 PQCUV0J106KB 10 | | | | | | | R225 ERJ2GEOROO 0 R231 ERJ2GEJ824 820k R232 ERJ2GEJ434X 430k R248 ERJ2GEOROO 0 R330 ERJ2GEJ105X IM R331 ERJ2GEJ73X 27k R332 ERJ2GEJ73X 27k R801 ERJ2GEJ681 680 R802 ERJ2GEJ101 100 R805 ERJ2GEJ271 220 R807 ERJ2GEJ221 220 R807 ERJ2GEJ221 220 CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUVIA105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUE1A104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUE1H100DCQ 10p C16 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C35 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C45 ECUE1H10DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1H10DCQ 10p C46 ECUE1H10DCQ 10p C47 ECUE1H10DCQ 10p C48 ECUE1H10DCQ 10p C49 ECUE1H10DCQ 10p C40 ECUE1A104KBQ 0.1 C41 ECUE1A104KBQ 0.1 C42 ECUE1H10DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1H10DCQ 10p C46 ECUE1H10DCQ 10p C47 ECUV1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | | | | R232 ERJ2GEJ434X 430k R248 ERJ2GEOROO 0 R330 ERJ2GEJ105X 1M R331 ERJ2GEJ273X 27k R332 ERJ2GEJ273X 27k R801 ERJ2GEJ681 680 R802 ERJ2GEJ101 100 R805 ERJ2GEJ21 220 R807 ERJ2GEJ221 220 (CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUE1H100DCQ 10p C18 ECUE1H00DCQ 10p C18 ECUE1H00DCQ 10p C44 ECUE1H00DCQ 10p C44 ECUE1H00DCQ 10p C45 ECUE1H104KBQ 0.1 C46 ECUE1H104KBQ 0.1 C47 ECUE1H104KBQ 0.1 C48 ECUE1H104CQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1H105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 0.1 C45 ECUE1H105KBV 0.1 C47 ECUE1H105KBV 0.1 C48 ECUE1H105KBV 0.1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUVOJ106KB 10 | | | | | | | R248 ERJ2GEOROO 0 R330 ERJ2GEJ105X 1M R331 ERJ2GEJ273X 27k R332 ERJ2GEJ273X 27k R801 ERJ2GEJ681 680 R802 ERJ2GEJ101 100 R805 ERJ2GEJ470 47 R806 ERJ2GEJ221 220 R807 ERJ2GEJ221 220 CCAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUVIA105KBV 1 C10 ECUVIA225KB 2.2 C11 ECUE1A104KBQ 0.1 C12 PQCUVOJ106KB 10 C13 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C35 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUEIA104KBQ 0.1 C47 ECUEIA104KBQ 0.1 C48 ECUEIH100DCQ 10p C49 ECUEIA104KBQ 0.1 C40 ECUEIA104KBQ 0.1 C41 ECUEIA104KBQ 0.1 C42 ECUEIA104KBQ 0.1 C43 ECUEIH100DCQ 10p C44 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIA105KBV 1 C55 ECUEIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUVOJ106KB 10 C53 PQCUVOJ106KB 10 | | R231 | ERJ2GEJ824 | 820k | | | R330 ERJ2GEJ105X 1M R331 ERJ2GEJ273X 27k R332 ERJ2GEJ273X 27k R801 ERJ2GEJ681 680 R802 ERJ2GEJ101 100 R805 ERJ2GEJ470 47 R806 ERJ2GEJ221 220 R807 ERJ2GEJ221 220 (CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUE1A104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUE1A104KBQ 0.1 C16 ECUE1A104KBQ 0.1 C17 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C35 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUEIA104KBQ 0.1 C44 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIA104KBQ 0.1 C47 ECUEIH10DCQ 10p C44 ECUEIA104KBQ 0.1 C45 ECUEIH10DCQ 10p C47 ECUEIA104KBQ 0.1 C49 ECUEIA105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 | | R232 | ERJ2GEJ434X | 430k | | | R331 ERJ2GEJ273X 27k R332 ERJ2GEJ273X 27k R801 ERJ2GEJ681 680 R802 ERJ2GEJ101 100 R805 ERJ2GEJ470 47 R806 ERJ2GEJ221 220 R807 ERJ2GEJ221 220 (CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUVIA105KBV 1 C10 ECUVIA225KB 2.2 C11 ECUELA104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUELA104KBQ 0.1 C16 ECUELA104KBQ 0.1 C17 ECUELH100DCQ 10p C35 ECUELH560JCQ 56p C40 ECUELA104KBQ 0.1 C43 ECUELA104KBQ 0.1 C44 ECUELA104KBQ 0.1 C45 ECUELA104KBQ 0.1 C46 ECUELA104KBQ 0.1 C47 ECUELH100DCQ 10p C44 ECUELA104KBQ 0.1 C45 ECUELH100DCQ 10p C46 ECUELA104KBQ 0.1 C47 ECUELH10DCQ 10p C48 ECUELH10DCQ 10p C59 ECUELA104KBQ 0.1 C49 ECUELA104KBQ 0.1 C40 ECUELA104KBQ 0.1 C41 ECUELA104KBQ 0.1 C42 ECUELA104KBQ 0.1 C43 ECUELH10DCQ 10p C44 ECUELA104KBQ 0.1 C45 ECUELA104KBQ 0.1 C46 ECUELA104KBQ 0.1 C57 ECUVIA105KBV 1 C59 ECUVIA105KBV 1 C59 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUVOJ106KB 10 | |
R248 | ERJ2GE0R00 | 0 | | | R332 ERJ2GEJ273X 27k R801 ERJ2GEJ681 680 R802 ERJ2GEJ101 100 R805 ERJ2GEJ470 47 R806 ERJ2GEJ221 220 R807 ERJ2GEJ221 220 (CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUVIA105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUELA104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUE1A104KBQ 0.1 C16 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C35 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1A104KBQ 0.1 C44 ECUELA104KBQ 0.1 C45 ECUE1H100DCQ 10p C44 ECUELA104KBQ 0.1 C45 ECUE1H10DCQ 10p C46 ECUE1H10DCQ 10p C47 ECUE1H10DCQ 10p C48 ECUE1H10DCQ 10p C49 ECUELA104KBQ 0.1 C49 ECUELA104KBQ 0.1 C50 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 | | R330 | ERJ2GEJ105X | 1м | | | R801 ERJ2GEJ681 680 R802 ERJ2GEJ101 100 R805 ERJ2GEJ470 47 R806 ERJ2GEJ221 220 R807 ERJ2GEJ221 220 (CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUEIA104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUEIA104KBQ 0.1 C16 ECUEIA104KBQ 0.1 C17 ECUEIH100DCQ 10p C18 ECUEIH100DCQ 10p C35 ECUEIH560JCQ 56p C40 ECUEIA104KBQ 0.1 C43 ECUEIA104KBQ 0.1 C44 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIA104KBQ 0.1 C47 ECUEIH100DCQ 10p C44 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIA104KBQ 0.1 C47 ECUV1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | 27k | | | R802 ERJ2GEJ101 100 R805 ERJ2GEJ470 47 R806 ERJ2GEJ221 220 R807 ERJ2GEJ221 220 (CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUELA104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUE1A104KBQ 0.1 C17 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C35 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1A104KBQ 0.1 C44 ECUELA104KBQ 0.1 C45 ECUE1H00DCQ 10p C44 ECUELA104KBQ 0.1 C45 ECUE1H00DCQ 10p C46 ECUELA104KBQ 0.1 C47 ECUE1H10DCQ 10p C48 ECUELA104KBQ 0.1 C59 ECUEV1A105KBV 1 C49 ECUEVIA105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | | | | R805 ERJ2GEJ470 47 R806 ERJ2GEJ221 220 R807 ERJ2GEJ221 220 (CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUEIA104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUEIA104KBQ 0.1 C17 ECUEIH100DCQ 10p C18 ECUEIH560JCQ 56p C40 ECUEIA104KBQ 0.1 C43 ECUEIA104KBQ 0.1 C44 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIA104KBQ 0.1 C47 ECUEIA104KBQ 0.1 C46 ECUEIA104KBQ 0.1 C47 ECUEIA105KBV 1 C49 ECUEIH100DCQ 10p C50 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 | | | | | | | R806 ERJ2GEJ221 220 R807 ERJ2GEJ221 220 (CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUEIA104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUEIA104KBQ 0.1 C17 ECUEIH100DCQ 10p C18 ECUEIH560JCQ 56p C40 ECUEIA104KBQ 0.1 C43 ECUEIA104KBQ 0.1 C44 ECUEIA104KBQ 0.1 C45 ECUEIA104KBQ 0.1 C46 ECUEIA104KBQ 0.1 C47 ECUEIA104KBQ 0.1 C46 ECUEIA104KBQ 0.1 C47 ECUV1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 | | | | | | | R807 ERJ2GEJ221 220 (CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUE1A104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUE1A104KBQ 0.1 C17 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C35 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1A104KBQ 0.1 C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1A104KBQ 0.1 C47 ECUEIA104KBQ 0.1 C46 ECUEIA104KBQ 1.0 C47 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 | | | | | | | (CAPACITORS) C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUE1A104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUE1A104KBQ 0.1 C17 ECUE1H100DCQ 10p C18 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1A104KBQ 0.1 C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1A104KBQ 0.1 C47 ECUEIA105KBV 1 C46 ECUEIA104KBQ 1.1 C47 ECUEIA105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 | | | | | | | C1 F2A0J3310067 330 C2 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUE1A104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C35 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1A104KBQ 0.1 C47 ECUE1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 | | , | _102950221 | | | | C2 F2A0J3310067 330 C5 ECUV1A105KBV 1 C10 ECUV1A225KB 2.2 C11 ECUE1A104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUE1A104KBQ 0.1 C17 ECUE1H100DCQ 10p C18 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1A104KBQ 0.1 C47 ECUE1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 | | C1 | F2A0J3310067 | | | | C5 ECUVIA105KBV 1 C10 ECUVIA225KB 2.2 C11 ECUE1A104KBQ 0.1 C12 PQCUV0J106KB 10 C13 ECUE1A104KBQ 0.1 C17 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C35 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1A104KBQ 10.1 C47 ECUE1A105KBV 1 C49 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIJ105KBV 1 C52 PQCUV0J106KB 10 | | | | | | | C11 ECUE1A104KBQ 0.1 C12 PQCUVOJ106KB 10 C13 ECUE1A104KBQ 0.1 C17 ECUE1H100DCQ 10p C18 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1A104KBQ 0.1 C47 ECUE1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUVOJ106KB 10 | | | | | | | C12 PQCUVOJ106KB 10 C13 ECUE1A104KBQ 0.1 C17 ECUE1H100DCQ 10p C18 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1A104KBQ 10.1 C47 ECUE1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUVOJ106KB 10 | | C10 | ECUV1A225KB | 2.2 | | | C13 ECUE1A104KBQ 0.1 C17 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C35 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1H100DCQ 10p C47 ECUV1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | C11 | ECUE1A104KBQ | 0.1 | | | C17 ECUE1H100DCQ 10p C18 ECUE1H100DCQ 10p C35 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1H100DCQ 10p C47 ECUV1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | _ | | | | C18 ECUE1H100DCQ 10p C35 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1H100DCQ 10p C47 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | | | | C35 ECUE1H560JCQ 56p C40 ECUE1A104KBQ 0.1 C43 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1H100DCQ 10p C47 ECUV1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | _ | | | C40 ECUE1A104KBQ 0.1 C43 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1H100DCQ 10p C47 ECUV1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | _ | | | C43 ECUE1H100DCQ 10p C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1H100DCQ 10p C47 ECUV1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | | | | C44 ECUE1A104KBQ 0.1 C45 ECUE1A104KBQ 0.1 C46 ECUE1H100DCQ 10p C47 ECUV1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | | | | C45 ECUE1A104KBQ 0.1 C46 ECUE1H100DCQ 10p C47 ECUV1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | = | | | C46 ECUE1H100DCQ 10p C47 ECUV1A105KBV 1 C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | | | | C47 ECUVIA105KBV 1 C49 ECUVIA105KBV 1 C50 ECUVIA105KBV 1 C51 ECUVIA105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | | | | C49 ECUV1A105KBV 1 C50 ECUV1A105KBV 1 C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | _ | | | C51 ECUV1A105KBV 1 C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | | | | C52 PQCUV0J106KB 10 C53 PQCUV0J106KB 10 | | | | | | | C53 PQCUV0J106KB 10 | | C51 | ECUV1A105KBV | 1 | | | | | C52 | PQCUV0J106KB | 10 | | | C54 ECUE1H100DCQ 10p | | | | | | | | | C54 | ECUE1H100DCQ | 10p | | | Safety | Ref.
No. | Part No. | Part Name & Description | Remarks | |--------|-------------|--------------|-----------------------------|----------| | | C55 | ECUE1H100DCQ | 10p | | | | C72 | ECUE1H100DCQ | 10p | | | | C73 | ECUE1H100DCQ | 10p | | | | C74 | ECUE1H100DCQ | 10p | | | | C75 | ECUE1H100DCQ | 10p | | | | C96 | ECUE1H100DCQ | 10p | | | | C97 | ECUE1H100DCQ | | | | | C103 | ECUE1H101JCQ | | | | | C104 | F1G1H100A723 | _ | | | | C105 | ECUE1H101JCQ | - | | | | C107 | ECUE1H330JCQ | _ | s | | | C113 | ECUE1H100DCQ | • | 5 | | | | | = | | | | C152 | ECUE1H102KBQ | | | | | C172 | ECUE1A104KBQ | | | | | C182 | F1G1H3R0A480 | _ | | | | C188 | ECUE0J105KBQ | | | | | C200 | ECUV1C105KBV | | | | | C201 | ECUV1C105KBV | | | | | C203 | ECUV1C105KBV | | | | | C204 | ECUV1C104KBV | 0.1 | | | | C331 | ECUE0J105KBQ | 1 | | | | C332 | ECUE0J105KBQ | 1 | | | | C341 | ECUE1H390JCQ | 39p | | | | C802 | F1G1H2R0A480 | 2.0p | | | | C803 | F1G1H1R5A480 | 1.5p | | | | C804 | F1G1H2R0A480 | 2.0p | | | | C805 | F1G1H3R3A480 | 3.3p | | | | C806 | F1G1H3R3A480 | 3.3p | | | | C808 | ECUE1A104KBQ | 0.1 | | | | C809 | F1G1H100A723 | 10p | | | | C810 | F1G1H1R6A480 | 1.6p | | | | C811 | F1G1H100A723 | - | | | | C812 | F1G1H100A723 | _ | | | | C813 | F1G1H1R6A480 | _ | | | | C814 | ECUE1H332KBQ | | | | | C819 | F1G1H100A723 | | | | | C822 | F1G1H100A723 | _ | | | | C825 | F1G1H100A723 | _ | | | | C826 | F1G1H3R0A480 | - | | | | | | | | | | C827 | F1G1H100A723 | - | | | | C834 | F1G1H1R0A480 | | | | | C860 | F1G1H100A723 | | | | | C861 | F1G1H3R0A480 | • | | | | | | (OTHERS) | | | | MIC100 | L0CBAY000032 | MICROPHONE
 | | | E101 | L5DYBYY00012 | LIQUID CRYSTAL DISPLAY (*4) | | | | E102 | PNHR1247Z | TRANSPARENT PLATE, LCD | PMMA-H | | | E103 | PNHR1246Z | GUIDE, LCD | ABS-HB | | | E104 | PNHX1254Z | COVER, LCD | | | | E105 | PNMC1013Z | CASE, MAGNETIC SHIELD (*3) | | | | E106 | PNLA1020Z | ANTENNA | | | | E107 | PNVE1002Z | BATTERY TERMINAL | | | | X1 | | CRYSTAL OSCILLATOR (*2) | | ### 15.4.3. Accessories #### Note You can download and refer to the Operating Instructions (Instruction book) on TSN Server. | Safetv | Ref. | Part No. | Part Name & Description | Remarks | |----------|------|------------|-------------------------|---------| | | | | | | | | No. | | | | | _ | | | | | | <u> </u> | A1 | PQLV219BXY | AC ADAPTOR | | | | | | | | | | A2 | POJA10075Z | CORD, TELEPHONE | | ### 15.4.4. Screws | Safety | Ref.
No. | Part No. | Part Name & Description | Remarks | |--------|-------------|------------|-------------------------|---------| | | A | XTB26+8GFJ | TAPPING SCREW | | | | В | XTB2+8GFJ | TAPPING SCREW | | ### 15.4.5. Fixtures and Tools #### Note: - (*1) See Equipment Required (P.45), and The Setting Method of JIG (Handset) (P.48). - (*2) When replacing the Handset LCD, See **How to** Replace the Handset LCD (P.44). | Safety | Ref. | Part No. | Part Name & Description Remarks | |--------|------|--------------|----------------------------------| | | No. | | | | | | PQZZ1CD300E | JIG CABLE (*1) | | | | PNZZTG2521BX | BATCH FILE CD-ROM (*1) | | | | PQZZ430PIR | TIP OF SOLDERING IRON (*2) | | | | PQZZ430PRB | RUBBER OF SOLDERING
IRON (*2) | Y.M KXTG2521BXT KXTGA251BXT