Service Manual

Plain Paper Fax with Copier
 KX-FP701CX KX-FP702CX

(for Asia and Middle Near East)

Abstract

This service information is designed for experienced repair technicians only and is not designed for use by the general public. It does not contain warnings or cautions to advise non-technical individuals of potential dangers in attempting to service a product. Products powered by electricity should be serviced or repaired only by experienced professional technicians. Any attempt to service or repair the product or products dealt with in this service information by anyone else could result in serious injury or death.

IMPORTANT SAFETY NOTICE

There are special components used in this equipment which are important for safety. These parts are marked by Δ in the Schematic Diagrams, Circuit Board Diagrams, Exploded Views and Replacements Parts List. It is essential that these critical parts should be replaced with manufacturer's specified parts to prevent shock, fire or other hazards. Do not modify the original design without permission of manufacturer.

IMPORTANT INFORMATION ABOUT LEAD FREE, (PbF), SOLDERING

If lead free solder was used in the manufacture of this product the printed circuit boards will be marked PbF . Standard leaded, (Pb), solder can be used as usual on boards without the PbF mark.

When this mark does appear please read and follow the special instructions described in this manual on the use of PbF and how it might be permissible to use Pb solder during service and repair work.

When you note the serial number, write down all 11 digits. The serial number may be found on the bottom of the unit.

TABLE OF CONTENTS

PAGE
1 Safety Precautions -3
1.1. For Service Technicians -3
1.2. AC Caution -3
1.3. Personal Safety Precautions -4
1.4. Service Precautions -5
2 Warning -6
2.1. About Lead Free Solder (PbF: Pb free) -6
2.2. Insulation Resistance Test -7
2.3. Battery Caution -7
3 Specifications -8
4 General/Introduction -9
4.1. Optional Accessories -9
5 Features -9
6 Technical Descriptions 10
6.1. Connection Diagram 10
6.2. General Block Diagram 11
6.3. Control Section 13
6.4. Facsimile Section 22
6.5. Sensors and Switches 31
6.6. Modem Section 35
6.7. NCU Section 42
6.8. ITS (Integrated telephone System) and Monitor Section 45
6.9. Operation Board Section 47
6.10. LCD Section 48
6.11. Power Supply Board Section 49
7 Location of Controls and Components 52
7.1. Overview 52
7.2. Control Panel 52
8 Installation Instructions 53
8.1. Installation Space 53
8.2. Connections 54
8.3. Installing the Ink Film 55
8.4. Installing the Paper Tray 56
8.5. Paper Support 57
8.6. Installing the Recording Paper -57
9 Operation Instructions - 58
9.1. Setting Your Logo 58
10 Test Mode 60
10.1. DTMF Signal Tone Transmit Selection 61
10.2. Button Code Table 62
10.3. Print Test Pattern 63
11 Service Mode 64
11.1. Programing and Lists 64
11.2. The Example of the Printed List 68
12 Troubleshooting Guide 73
12.1. Troubleshooting Summary 73
12.2. Error Messages-Display -74
12.3. Error Messages-Report 76
12.4. Remote Programming 98
12.5. Troubleshooting Details 101
13 Service Fixture \& Tools 133
14 Disassembly and Assembly Instructions 134
14.1. DISASSEMBLY FLOW CHART 134
14.2. DISASSEMBLY PROCEDURE 136
15 Maintenance 151
15.1. Maintenance Items and Component Locations 151
15.2. GEAR SECTION 153PAGE
15.3. Jams 158
15.4. Cleaning 160
16 Miscellaneous 163
16.1. Terminal Guide of the ICs Transistors and Diodes 163
16.2. How to Replace the Flat Package IC 165
16.3. Test Chart 167
17 Schematic Diagram 170
17.1. Digital Board (PCB1) 170
17.2. Analog Board (PCB2) 174
17.3. Operation Board (PCB3) 176
17.4. Power Supply Board (PCB4) 177
17.5. Interface Board (PCB5) 178
17.6. Sensor Board (PCB6) 179
18 Printed Circuit Board 181
18.1. Digital Board (PCB1) 181
18.2. Analog Board (PCB2) 183
18.3. Operation Board (PCB3) 185
18.4. Power Supply Board (PCB4) 187
18.5. Interface Board (PCB5) 189
18.6. Sensor Board (PCB6) 191
19 Appendix Information of Schematic Diagram 192
20 Exploded View and Replacement Parts List 193
20.1. Cabinet, Mechanical and Electrical Parts Location 193
20.2. Replacement Parts List 202

1 Safety Precautions

1. Before servicing, unplug the AC power cord to prevent an electric shock.
2. When replacing parts, use only the manufacturer's recommended components.
3. Check the condition of the power cord. Replace if wear or damage is evident.
4. After servicing, be sure to restore the lead dress, insulation barriers, insulation papers, shields, etc.
5. Before returning the serviced equipment to the customer, be sure to perform the following insulation resistance test to prevent the customer from being exposed to shock hazards.

1.1. For Service Technicians

ICs and LSIs are vulnerable to static electricity.

When repairing, the following precautions will help prevent recurring malfunctions.

1. Cover the plastic part's boxes with aluminum foil.
2. Ground the soldering irons.
3. Use a conductive mat on the worktable.
4. Do not touch the IC or LSI pins with bare fingers.

1.2. AC Caution

For safety, before closing the lower cabinet, please make sure of the following precautions.

1. The earth lead is fixed with the screw.
2. The AC lead is connected properly to power supply board.
3. Wrap the earth lead around the core 5 times.
4. Wrap the AC lead around the core 5 times.
(Bottom View)

1.3. Personal Safety Precautions

1.3.1. Moving Sections of the Unit

Be careful not to let your hair, clothes, fingers, accessories, etc., become caught in any moving sections of the unit.
The moving sections of the unit are the rollers and a gear. There is a separation roller and a document feed roller which are rotated by the document feed motor. A gear rotates the two rollers. Be careful not to touch them with your hands, especially when the unit is operating.

1.3.2. Live Electrical Sections

All the electrical sections of the unit supplied with AC power by the AC power cord are live.
Never disassemble the unit for service with the AC power supply plugged in.

CAUTION:

AC voltage is supplied to the primary side of the power supply unit. Therefore, always unplug the AC power cord before disassembling for service.
(Bottom View)

1.4. Service Precautions

1.4.1. Precautions to Prevent Damage from static Electricity

Electrical charges accumulate on a person. For instance, clothes rubbing together can damage electric elements or change their electrical characteristics. In order to prevent static electricity, touch a metallic part that is grounded to release the static electricity. Never touch the electrical sections such as the power supply unit, etc.

2 Warning

2.1. About Lead Free Solder (PbF: Pb free)

Note:
In the information below, Pb , the symbol for lead in the periodic table of elements, will refer to standard solder or solder that contains lead.

We will use PbF solder when discussing the lead free solder used in our manufacturing process which is made from Tin, (Sn), Silver, (Ag), and Copper, (Cu).

This model, and others like it, manufactured using lead free solder will have PbF stamped on the PCB. For service and repair work we suggest using the same type of solder.

Caution

- PbF solder has a melting point that is $50^{\circ} \sim 70^{\circ} \mathrm{F},\left(30^{\circ} \sim 40^{\circ} \mathrm{C}\right)$ higher than Pb solder. Please use a soldering iron with temperature control and adjust it to $700^{\circ} \pm 20^{\circ} \mathrm{F},\left(370^{\circ} \pm 10^{\circ} \mathrm{C}\right)$.
- Exercise care while using higher temperature soldering irons.: Do not heat the PCB for too long time in order to prevent solder splash or damage to the PCB.
- PbF solder will tend to splash if it is heated much higher than its melting point, approximately $1100^{\circ} \mathrm{F},\left(600^{\circ} \mathrm{C}\right)$.
- When applying PbF solder to double layered boards, please check the component side for excess which may flow onto the opposite side (See figure, below).

2.1.1. Suggested PbF Solder

There are several types of PbF solder available commercially. While this product is manufactured using Tin, Silver, and Copper, $(\mathrm{Sn}+\mathrm{Ag}+\mathrm{Cu})$, you can also use Tin and Copper, $(\mathrm{Sn}+\mathrm{Cu})$, or Tin, Zinc, and Bismuth, $(\mathrm{Sn}+\mathrm{Zn}+\mathrm{Bi})$. Please check the manufacturer's specific instructions for the melting points of their products and any precautions for using their product with other materials.
The following lead free (PbF) solder wire sizes are recommended for service of this product: $0.3 \mathrm{~mm}, 0.6 \mathrm{~mm}$ and 1.0 mm .

2.2. Insulation Resistance Test

1. Unplug the power cord and short the two prongs of the plug with a jumper wire.
2. Turn on the power switch.
3. Measure the resistance value with an ohmmeter between the jumpered AC plug and each exposed metal cabinet part (screw heads, control shafts, bottom frame, etc.).
Note: Some exposed parts may be isolated from the chassis by design. These will read infinity.
4. If the measurement is outside the specified limits, there is a possibility of a shock hazard.

Resistance $=$ more than $1 \mathrm{M} \Omega$
(at DC 500 V)

2.3. Battery Caution

Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instruction.

CAUTION:

The lithium battery is a critical component (type No. CR2032). Please observe for the proper polarity and the exact location when replacing it and soldering the replacement lithium battery in.

3 Specifications

Any details given in these instructions are subject to change without notice.

Applicable Lines:
 Document Size:
 Effective Scanning Width:
 Recording Paper Size:
 Effective Printing Width:
 Recording Paper Weight:
 Transmission Speed ${ }^{* 1}$:
 Scanning Density:

Photo Resolution:
Scanner Type:
Printer Type:
Data Compression System:
Modem Speed:
Operating Environment:
Dimensions:
Mass (Weight):
Power Consumption:

Power Supply:
 Fax Memory Capacity*3:

Public Switched Telephone Network
Max. 216 mm in width, Max. 600 mm in length
208 mm
A4: $210 \mathrm{~mm} \times 297 \mathrm{~mm}$
Letter: $216 \mathrm{~mm} \times 279 \mathrm{~mm}$
A4: 202 mm
Letter: 208 mm
$60 \mathrm{~g} / \mathrm{m}^{2}$ to $90 \mathrm{~g} / \mathrm{m}^{2}$ (KX-FP701CX)
$64 \mathrm{~g} / \mathrm{m}^{2}$ to $80 \mathrm{~g} / \mathrm{m}^{2}$ (KX-FP702CX)
Approx. $12 \mathrm{~s} /$ page (ECM-MMR)*2
Horizontal: 8 pels/mm
Vertical:
3.85 lines/mm (standard resolution)
7.7 lines/mm (fine/photo resolution)
15.4 lines/mm (super fine resolution)

64 levels
Contact Image Sensor
Thermal Transfer on plain paper
Modified Huffman (MH), Modified READ (MR), Modified Modified READ (MMR)
9,600 / 7,200 / 4,800 / 2,400 bps; Automatic Fallback
$5-35^{\circ} \mathrm{C}, 20-80 \% \mathrm{RH}$ (Relative Humidity)
Approx. height $185 \mathrm{~mm} \times$ width $355 \mathrm{~mm} \times$ depth 272 mm
Approx. 3.5 kg
Standby: Approx. 1.5 W
Transmission: Approx. 12 W
Reception: Approx. 30 W (When receiving a 20\% black document)
Copy: Approx. 40 W (When copying a 20\% black document)
Maximum: Approx. 135 W (When copying a 100% black document)
220 V - 240 V AC, $50 / 60 \mathrm{~Hz}$
Transmission: Approx. 25 pages
Reception: Approx. 28 pages
(Based on the ITU-T No. 1 Test Chart in standard resolution, without using the Error
Correction Mode.)
*1 Transmission speed depends on the contents of the pages, resolution, telephone line conditions and capability of the other party's machine.
*2 Transmission speed is based on the ITU-T No. 1 Test Chart with original mode. If the capability of the other party's machine is inferior to your unit, the transmission time may be longer. (Refer to 16.3.1.ITU-T No. 1 Test chart (P.167).)
*3 If an error occurs during fax reception, such as a paper jam or if the recording paper runs out, the fax and subsequent faxes will be retained in memory.

4 General/Introduction

4.1. Optional Accessories

Model No.	Description	Specification
KX-FA57A or KX-FA57E	Replacement Film ${ }^{* 1}$	$70 \mathrm{~m} \times 1$ rolls (Prints about 210 A4-sized pages)

[^0]
5 Features

General

- LCD (Liquid Crystal Display) readout

Plain Paper Facsimile Machine

- 12 second transmission speed*
- A4, Letter, G3 compatible
- Automatic document feeder (up to 10 sheets)
- Quick scan
- Resolution: Standard/Fine/Super fine/Photo (64 level)
- Broadcast
- 50-sheet recording paper capacity
- Automatic fax/phone switching
- Distinctive ring detection **
* The 12 second speed is based upon the ITU-T No. 1 Test Chart on the condition that memory transmission is performed.
** Subscription to distinctive ring services is required.

Large Memory... Performed by DRAM

Approx. 28 pages of memory reception
Approx. 25 pages of memory transmission
Integrated Telephone System

- On-hook dialing
- Voice muting
- Redialing function
- 106-station telephone directory with Phonebook
- Caller ID service

This unit is compatible with the Caller ID service offered by your local telephone company. To use this unit's Caller ID features, you must subscribe to Caller ID service. Important:

- This unit is designed in accordance with the ETS (European Telecommunication Standard) and only supports the basic CLIP (Calling Line Identification Presentation) features.
- This unit will only display the caller's telephone number and name.
- This unit will not support future additional telephone services.
- Depending on the service of the local telephone company, the date/time of the call or the caller's name may not be displayed.
Make sure the following ring count is set to 2 or more rings beforehand.
- FAX ring count (feature \#06 on P.99)
- TEL/FAX ring count (feature \#78 on P.99)

Enhanced Copier Function

- Multi-copy function (up to 50 copies)
- Enlargement and reduction
- Collate

64-Level halftone

6 Technical Descriptions

6.1. Connection Diagram

6.2. General Block Diagram

The following is an outline of each device IC on the digital board. (Refer to 6.2.1.General Block Diagram (P.12).).

1. ASIC (IC1)

Composed mainly of an address decoder and a modem control.
Controls the general FAX operations.
Controls the operation panel I/F.
Controls the thermal head I/F and CIS I/F
Performs the image processing
CPU and Real time clock
Provides the reset pulse for each of the major ICs.
2. Flash ROM (IC6)

Contains all of the program instructions on the unit operations.
This memory is used mainly for the parameter working in the storage area.
3. Dynamic RAM (IC4)

This memory is used mainly for the parameter working in the storage area.
4. MODEM (IC5)

Performs the modulation and the demodulation for FAX communication.
5. Read Section
"Contact Image Sensor "(CIS) to read transmitted documents.
6. Motor Driver (IC401,IC402)

Drives the transmission motor and the reception motor.
7. Thermal Head

Contains heat-emitting elements for dot matrix image printing
8. Analogue Board

Composed of ITS circuit and NCU circuit.
9. Sensor Section

Composed of a cover open, a document set switch, a document top switch, a paper top sensor.
10. Power Supply Board Switching Section

Supplies +6 V and +24 V to the unit.

6.2.1. General Block Diagram

6.3. Control Section

6.3.1. Block Diagram

6.3.2. Memory Map

6.3.3. ASIC (IC1)

This custom IC is used for the general FAX operations.

1. CPU:

This model uses a Z80 equivalent to the CPU operating at 12 MHz . Most of the peripheral functions are performed by custom-designed LSIs. Therefore, the CPU only works for processing the results.
2. RTC:

Real Time Clock
3. DECODER

Decodes the address
4. ROM/RAM I/F:

Controls the SELECT signal of ROM or RAM and the bank switching
5. CIS I/F:

Controls the document reading.
6. IMAGE DATA RAM:

This memory is programmed into the ASIC and uses 8 KB for the image processing. (See Fig. A.*)
7. THERMAL HEAD I/F:

Transmits the recorded data to the thermal head.
8. MOTOR I/F:

Controls the transmission motor which feeds the document.
Controls the receiving motor which feeds the recording paper.
9. OPERATION PANEL I/F:

Serial interface with Operation Panel.
10. I/O PORT:

I/O Port Interface.
11. ANALOGUE UNIT:

Electronic volume for the monitor.
Sends beep tones, etc.

DFFF H	SHADING DATA 2KB
D800 H	IMAGE PROCESSING WORK 1KB
D000 H	LINE MEMORY 4 LINE 1KB
	n-1/n+1 LINE MEMORY 2KB
C 800 H	n LINE MEMORY 2KB
$\begin{aligned} & \mathrm{COOOH} \\ & \text { (CPU AD } \end{aligned}$	ESS)

Fig. A
Note:
This memory is incorporated into the ASIC (IC1) and used for the image processing
Fig. A shows the memory map of the Image Data RAM.

Descriptions of Pin Distribution (IC1)

NO.	SIGNAL	I/O	POWER SUPPLIED VOLTAGE	DESCRIPTION
1	VSSA		GND	POWER SOURCE (ANALOG GND)
2	VDDA 3.3		3.3 V	POWER SOURCE (ANALOG +3.3V)
3	AIN1	A	3.3 V	CIS IMAGE SIGNAL INPUT (SIG)
4	AIN2	A	3.3 V	THERMISTOR TEMPERATURE WATCH INPUT
5	AIN3	A	3.3 V	LINE VOLTAGE DETECTION SIGNAL INPUT (DCIN)
6	AMON	A	3.3 V	ANALOG SIGNAL MONITOR TERMINAL
7	VSS		GND	POWER SOURCE (GND)
8	X32OUT	O	3.3V/BATT	RTC (32.768KHz) CONNECTION
9	X32IN	I	3.3V/BATT	RTC (32.768KHz) CONNECTION
10	VDD (3.3V / B)		-----	POWER SOURCE (+3.3V/LITHIUM BATTERY)
11	XBACEN	I	3.3V/BATT	BACKUP ENABLE
12	XRAMCS	0	3.3V/BATT	NOT USED
13	VDD (3.3V / B)		-----	POWER SOURCE(+3.3V / LITHIUM BATTERY)
14	VDD (2.5V/B)		-----	POWER SOURCE (+2.5V / LITHIUM BATTERY)
15	FTG	0	3.3 V	START SIGNAL OUTPUT FOR CIS (SI)
16	F1	0	3.3 V	CLOCK SIGNAL OUTPUT FOR CIS (CLK)
17	F2/OP	0	3.3 V	OUTPUT PORT (THON)
18	FR/OP	0	3.3 V	OUTPUT PORT (MDMRST)
19	CPC	I	3.3 V	INPUT PORT (BELL/CPC)
20	RVN	I	3.3 V	INPUT PORT (REED)
21	IRDATXD/IOP	0	3.3 V	OUTPUT PORT (NOT USED)
22	IRDARXD/IOP80	0	3.3 V	OUTPUT PORT (NOT USED)
23	TXD/IOP	0	3.3 V	OUTPUT PORT (FILMEND)
24	RXD/IOP	0	3.3 V	OUTPUT PORT (NOT USED)
25	XRTS/IOP	0	3.3 V	OUTPUT PORT (NOT USED)
26	XCTS/IOP	0	3.3 V	OUTPUT PORT (NOT USED)
27	VDD (2.5V)		-----	POWER SOURCE (+2.5V)
28	TONE1	A	3.3 V	TONE OUTPUT
29	TONE2	A	3.3 V	TONE OUTPUT
30	VOLUREF	A	3.3 V	ANALOG REF VOLTAGE
31	VOLUOUT	A	3.3 V	VOLUME OUTPUT
32	VOLUIN	A	3.3 V	VOLUME INPUT
33	XNMI	I	3.3 V	HIGH FIXED
34	FMEMDO/IOP	0	3.3 V	OUTPUT PORT (CISLED)
35	VDD (3.3V)		-----	POWER SOURCE (+3.3V)
36	VSS		GND	POWER SOURCE (GND)
37	VSS		GND	POWER SOURCE (GND)
38	VDD (3.3V)		-----	POWER SOURCE (+3.3V)
39	MIDAT/IOP	0	3.3 V	OUTPUT PORT (TONE1EN)
40	MICLK/IOP	0	3.3 V	OUTPUT PORT (HSTX MUTE)
41	MILAT/IOP	0	3.3 V	OUTPUT PORT (HS RX EN)
42	20KOSC/IOP	O	3.3 V	OUTPUT PORT (CIS ON)
43	XWAIT	I	3.3 V	INPUT PORT (HOOK)
44	HSTRD/IOP	O	3.3 V	OUTPUT PORT (RLY)
45	HSTWR/IOP	O	3.3 V	OUTPUT PORT (NOT USED)
46	XOPRBE	O	3.3 V	MFCS
47	ADR15	O	3.3 V	CPU ADDRESS BUS 15 (NOT USED)
48	ADR14	O	3.3 V	CPU ADDRESS BUS 14 (NOT USED)
49	ADR13	O	3.3 V	CPU ADDRESS BUS 13 (NOT USED)
50	VDD (2.5V)		-----	POWER SOURCE (+2.5V)
51	XOUT	O	3.3 V	SYSTEM CLOCK (24MHz)
52	XIN	I	3.3 V	SYSTEM CLOCK (24MHz)
53	VSS		GND	POWER SOURCE (GND)
54	VDD (3.3V)		-----	POWER SOURCE (+3.3V)
55	XTEST	O	3.3 V	24MHz CLOCK
56	TEST1	I	3.3 V	HIGH FIXED

NO.	SIGNAL	I/O	POWER SUPPLIED VOLTAGE	DESCRIPTION
57	TEST2	I	3.3 V	HIGH FIXED
58	TEST3	I	3.3 V	HIGH FIXED
59	TEST4	I	3.3 V	HIGH FIXED
60	XMDMINT	1	3.3 V	MODEM INTERRUPT
61	XMDMCS	0	3.3 V	MODEM CHIP SELECT
62	XRAS/IOP	0	3.3 V	DRAM (IC4) ROW ADDRESS STROBE
63	XCAS1/IOP	0	3.3 V	DRAM (IC4) CULUMN ADDRESS STROBE
64	XCAS2/IOP	0	3.3 V	OUTPUT PORT (NOT USED)
65	XRESCS2	0	3.3 V	FLASH CHIP SELECT (XRESCS2)
66	DB3	I/O	3.3 V	CPU DATA BUS 3
67	DB2	I/O	3.3 V	CPU DATA BUS 2
68	DB4	I/O	3.3 V	CPU DATA BUS 4
69	DB1	I/O	3.3 V	CPU DATA BUS 1
70	DB5	I/O	3.3 V	CPU DATA BUS 5
71	VDD (3.3V)		-----	POWER SOURCE (+3.3V)
72	VSS		GND	POWER SOURCE (GND)
73	VSS		GND	POWER SOURCE (GND)
74	VDD (3.3V)		-----	POWER SOURCE (+3.3V)
75	DB0	I/O	3.3 V	CPU DATA BUS 0
76	DB6	I/O	3.3 V	CPU DATA BUS 6
77	DB7	I/O	3.3 V	CPU DATA BUS 7
78	XROMCS	0	3.3 V	ROM (IC6) CHIP SELECT
79	RD	0	3.3 V	CPU RD
80	WR	0	3.3 V	CPU WR
81	ADR0	0	3.3 V	CPU ADDRESS BUS 0
82	ADR1	0	3.3 V	CPU ADDRESS BUS 1
83	ADR2	0	3.3 V	CPU ADDRESS BUS 2
84	ADR3	0	3.3 V	CPU ADDRESS BUS 3
85	ADR4	O	3.3 V	CPU ADDRESS BUS 4
86	ADR5	O	3.3 V	CPU ADDRESS BUS 5
87	VSS		GND	POWER SOURCE (GND)
88	VDD (2.5V)		-----	POWER SOURCE (+2.5V)
89	ADR6	O	3.3 V	CPU ADDRESS BUS 6
90	ADR7	0	3.3 V	CPU ADDRESS BUS 7
91	ADR8	O	3.3 V	CPU ADDRESS BUS 8
92	ADR9	O	3.3 V	CPU ADDRESS 9
93	ADR10	0	3.3 V	CPU ADDRESS 10
94	ADR11	O	3.3 V	CPU ADDRESS 11
95	ADR12	O	3.3 V	CPU ADDRESS 12
96	RBA0	O	3.3 V	ROM/RAM BANK ADDRESS 0
97	RBA1	O	3.3 V	ROM/RAM BANK ADDRESS 1
98	RBA2	O	3.3 V	ROM/RAM BANK ADDRESS 2
99	RBA3	O	3.3 V	ROM/RAM BANK ADDRESS 3
100	RBA4	O	3.3 V	ROM/RAM BANK ADDRESS 4
101	RBA5	O	3.3 V	ROM/RAM BANK ADDRESS 5
102	RBA6/IOP96	O	3.3 V	OUTPUT PORT (PTOP SEN ON)
103	STB1	O	3.3 V	STROBE SIGNAL OUTPUT TO THERMAL HEAD
104	STB2	O	3.3 V	STROBE SIGNAL OUTPUT TO THERMAL HEAD
105	STB3	O	3.3 V	(NOT USED)
106	XRESET	I	3.3 V	RESET INPUT
107	VDD (3.3V)		-----	POWER SOURCE (+3.3V)
108	VSS		GND	POWER SOURCE (GND)
109	VSS		GND	POWER SOURCE (GND)
110	VDD (3.3V)		-----	POWER SOURCE (+3.3V)
111	XORESET	O	3.3 V	SYSTEM RESET OUTPUT
112	VDD(5V)		-----	POWER SOURCE (+5V)
113	VSS		GND	POWER SOURCE (GND)

NO.	SIGNAL	I/O	POWER SUPPLIED VOLTAGE	DESCRIPTION
114	XRESETI	I	3.3 V	RESET INPUT
115	WDERR	0	3.3 V	WATCHED ERROR OUTPUT SIGNAL
116	THDAT	O	3.3 V	RECORDED IMAGE OUTPUT (XTHDAT)
117	THCLK	0	3.3 V	CLOCK OUTPUT FOR DATA TRANSFER (XTHCLK)
118	THLAT	O	3.3 V	PULSE OUTPUT FOR DATA LATCH (XTHLAT)
119	STBNP	I	0 V	INPUT PORT (NOT USED)
120	RM0/IOP	0	3.3 V	RX MOTOR A PHASE
121	RM1/IOP	I/O	3.3 V	RX MOTOR B PHASE
122	RM2/IOP	I/O	3.3 V	RX MOTOR /A PHASE
123	RM3/IOP	I/O	3.3 V	RX MOTOR /B PHASE
124	RXE/IOP	O	3.3 V	RX MOTOR ENABLE
125	TMO	0	3.3 V	TX MOTOR A PHASE
126	VDD (2.5V)		--	POWER SOURCE (+2.5V)
127	VSS		GND	POWER SOURCE (GND)
128	TM1/IOP	0	3.3 V	TX MOTOR B PHASE
129	TM2/IOP	0	3.3 V	TX MOTOR /A PHASE
130	TM3/IOP	O	3.3 V	TX MOTOR /B PHASE
131	TXE/IOP	O	3.3 V	TX MOTOR ENABLE
132	KSTART	O	3.3 V	OPERATION PANEL CONTROL
133	KLATCH	O	3.3 V	OPERATION PANEL CONTROL
134	KSCLK	0	3.3 V	OPERATION PANEL CONTROL
135	KTXD	0	3.3 V	OPERATION PANEL CONTROL
136	KRXD	I	3.3 V	OPERATION PANEL CONTROL
137	FMEMCLK/IOP	0	3.3 V	OUTPUT PORT (OP RESET)
138	FMEMDI/IOP	O	3.3 V	OUTPUT PORT (SP MUTE)
139	ADSEL1	O	3.3 V	CHANNEL SELECT SIGNAL FOR AIN2
140	VDDA (2.5V)		2.5 V	POWER SOURCE (ANALOG +2.5V)
141	VREFB	A	3.3 V	A/D CONVERTER'S ZERO STANDARD VOLTAGE OUTPUT
142	VCL	A	3.3 V	ANALOG PART STANDARD VOLTAGE SIGNAL
143	VREFT	A	3.3 V	A/D CONVERTER'S FULL SCALE VOLTAGE OUTPUT
144	VSSA		GND	POWER SOURCE (ANALOG GND)

6.3.4. Flash Memory (IC6)

This 512KB ROM (FLASH MEMORY) carries a common area of 32KB and bank areas which each have 8KB (BK4~BK63). The addresses from 0000 H to 7 FFFFH are for the common area and from 8000 H to 9 FFFH are for the bank areas.

6.3.5. Dynamic RAM (IC4)

The DRAM serves as CPU and receives memory.
The address is F200H~F3FFH (DRAM access window 1) and F600H~F7FFH (DRAM access window 2).

6.3.6. Reset Circuit (Watch dog timer)

The output signal (reset) from pin 4 of the voltage detect IC (IC3) is input to the ASIC (IC1) 114 pin.

Circuit Diagram

1. During a momentary power interruption, a positive reset pulse of $50 \sim 70 \mathrm{msec}$ is generated and the system is reset completely.

2. The watch dog timer, built-in the ASIC (IC1), is initialized by the CPU about every 1.5 ms .

When a watch dog error occurs, pin 115 of the ASIC (IC1) becomes low level.
The terminal of the 'WDERR' signal is connected to the reset line, so the 'WDERR' signal works as the reset signal.

6.3.7. RTC Backup Circuit

1. Function

This unit has a lithium battery (BAT401) which works for Real Time Clock IC (RTC: inside IC1).
The RTC continues to work, backed up by a lithium battery even when the power switch is OFF.
The user parameters for autodial numbers, the system setup data and others are in the FLASH MEMORY (IC6).

2. RTC Inside (IC1) Backup Circuit Operation

When the power switch is turned ON, power is supplied through Q7 to the RTC (inside IC1). At this time, the voltage at pin 14 of the IC1 is +2.5 V . When the power switch is turned OFF, the BAT401 supplies power to RTC through D407 and Q505. The voltage at pin 14 of IC1 is about +2.2 V . When the power switch is OFF and the voltage of +3.3 V decreases, pin 14 of RTC (IC1) becomes roughly the same voltage as the battery voltage. RTC goes into the backup mode, in which the power consumption is lower.

Circuit Diagram

6.3.8. Supervision Circuit for the Thermal Head Temperature

1. Function

The thermistor changes the resistor according to the temperature and uses the thermistor's characteristics. The output of pin 139 of IC1 becomes a low level. Then when it becomes a high level, it triggers point A In point C, according to the voltage output time, the thermal head's temperature is detected.
After the thermal head temperature is converted to voltage in B, it is then changed to digital data in the A / D converter inside IC1. The CPU decides the strobe width of the thermal head according to this value. Therefore, this circuit can keep the thermal head at an even temperature in order to stabilize the printing density and prevent the head from being overheated.

Circuit Diagram

Timing Chart

Trigger

REFERENCE:

6.4.3.Thermal Head (P.24)

6.4. Facsimile Section

6.4.1. Image Data Flow During Facsimile Operation

Copy (Fine, Super-Fine, Half Tone)

1. Line information is read by Contact Image Sensor (to be used as the reference white level) via route1, and is input to IC1. Refer to 6.4.2.Block Diagram (P.23)
2. In IC1, the data is adjusted to a suitable level for A/D conversion in the Analogue Signal Processing Section, and via route2 it is input to A/D conversion (8 bit). After finishing A/D conversion, the data is input to the Image Processing Section via route3. Then via route 4 and route5, it is stored in RAM as shading data.
3. The draft's information that is read by CIS is input to IC1 via route1. After it is adjusted to a suitable level for A/D conversion via route2, the draft's information is converted to A/D (8 bit), and it is input to the Image Processing Section. The other side, the shading data which flows from RAM via route6 and route7, is input to the Image Processing Section. After finishing the draft's information image processing, white is regarded as " 0 " and black is regarded as "1". Then via routes 4 and 5 , they are stored in RAM.
4. The white/black data stored as above via routes 6 and8 is input to the P / S converter. The white/black data converted to serial data in the P/S converter is input to the Thermal Head via route9 and is printed out on recording paper.

Note:

Standard: Reads 3.85 times $/ \mathrm{mm}$
Fine: Reads 7.7 times $/ \mathrm{mm}$
Super-Fine: Reads 15.4 times $/ \mathrm{mm}$

Transmission

1. Same processing as Copy items 1-3.
2. The data stored in the RAM of IC1 is output from IC1 via routes6 and 10, and is stored in the system bus. Via route11, it is stored in the communication buffer inside DRAM (IC4).
3. While retrieving data stored in the communication buffer synchronous with the modem, the CPU (inside IC1) inputs the data to the modem along route12, where it is converted to serial analogue data and forwarded over the telephone lines via the NCU Section.

Reception

1. The serial analogue image data is received over the telephone lines and input to the modem via the NCU section, where it is demodulated to parallel digital data. Then the CPU (IC1) stores the data in the communication buffer DRAM (IC4) along route12.
2. The data stored in DRAM (IC4) is decoded by the CPU (IC1) via route12, and is stored in DRAM (IC4) via routes13 and 5.
3. Same processing as Copy item 4.

6.4.2. Block Diagram

TEL. LINE

6.4.3. Thermal Head

1. Function

This unit utilizes the state of the art thermal printer technology.
The ink film is chemically processed. The ink film is comprised of two parts: an ink layer and a base film. When the thermalhead contacts this ink film, it emits heat momentarily, and the ink layer is melted and transferred to the paper. If this continues, letters and/or diagrams appear, and the original document is reproduced.

Composition of the receive record section (Thermal recording format)

2. Circuit Operation

Refer to the block diagram and the timing chart on the following page.
There are 9 driver ICs aligned horizontally on the thermal head and each one of these ICs can drive 192 heat emitting registers. This means that one line is at a density of $192 \times 9=1728$ dots $=(8$ dots $/ \mathrm{mm})$.
White/Black (white=0, black=1) data in one line increments is synchronized at IC1 pin 117 (THCLK), and sent from IC1 pin 116 (THDAT) to the shift register of the ICs. The shift registers of the 9 ICs are connected in series, and upon the shift of dot increment 1728, all the shift registers become filled with data, and a latch pulse is emitted to each IC from IC1 pin 118 (THLAT).With this latch pulse, all the contents of the shift registers are latched to the latch registers. Thereafter, through the addition of strobes from the IC1 pins $(103,104)$ only black dot locations $(=1)$ among latched data activates the driver, and the current passes to heat the emitting body causing heat emission.
Here, the two line strobes, STB1 and STB2, impress at intervals of 9.216 msec , as required for one-line printout.
The sequence is shown on the next page. [Moreover, for the strobe width, the thermistor value inside the thermal head is detected according to IC1 pin 4. Depending on that value, the strobe width is recorded in ROM (IC6).
Accordingly, the strobe width is determined.
When the thermal head is not used, the IC1 (17, THON) becomes low, Q502 turns OFF, Q401 turns OFF, and the +24 V power supply for the thermal head driver is not impressed to protect the IC.

Circuit Diagram

6.4.4. Scanning Block

The scanning block of this device consists of a control circuit and a contact image sensor made up of a celfoc lens array, an LED array, and photoelectric conversion elements.

Circuit Diagram

When an original document is inserted and the start button pressed, pin 34 of IC1 goes to a high level and the transistor Q8 turns on. This applies voltage to the LED array to light it. The contact image sensor is driven by each of the FTG-F1 signals output from IC1, and the original image illuminated by the LED array undergoes photoelectric conversion to output an analogue image signal (AIN). The analogue image signal is input to the system ASIC on AIN1 (pin 3 of IC1) and converted into 8 -bit data by the A/D converter inside IC1. Then this signal undergoes digital processing in order to obtain a high-quality image.

6.4.5. \quad Stepping Motor Drive Circuit (RX)

1. Function

The stepping motor works for reception and copy.
2. Motor

During motor driving, pin 124 of ASIC IC1 becomes high level, IC401 10pin becomes low level, and Q401 turns ON. As a result, +24 V is supplied to the motor coil.
Stepping pulses are output from ASIC IC1 pins, 124, 120~123, causing driver IC401 pins, 16~13 to drive the Motor Coil. The motor coil is energized sequentially in 2 phase increments, which causes a 1 -step rotation The timing chart is below.

Stepping Monitor Timing Chart

- 2-2 Phase			- 1-2 Phase	
RM0		\square		\ulcorner
RM1				
RM2		\square		
RM3]	
	$\rightarrow 1$		$1 \leftarrow$	
	t (sec)		t (sec)	
	Stepping Motor Drive Mode			
	Function	Mode	Phase Pattern	Speed
	Copy	Fine, Photo	1-2	$432 \mathrm{pps}(\mathrm{t}=1 / 432)$
		Super Fine	1-2	$216 \mathrm{pps}(\mathrm{t}=1 / 216$)
	FAX Receiving	Standard, Fine, Photo	1-2	$432 \mathrm{pps}(\mathrm{t}=1 / 432)$
		Super Fine	1-2	$216 \mathrm{pps}(\mathrm{t}=1 / 216)$
	Paper Feed	--	1-2	$432 \mathrm{pps}(\mathrm{t}=1 / 432)$
	Stand-by	-	All phases are currently off.	None

Circuit Diagram

When the motor suspends while it is in the receive mode (about 70~80 msec), pin 124 of ASIC IC1 becomes a low level and Q401 turns OFF, and instead of $+24 \mathrm{~V},+6 \mathrm{~V}$ is supplied through D401 so that the motor is held in place. When the system is in the standby mode, all of the motor drive transistors turn OFF. Consequently, the motor current stops

6.4.6. \quad Stepping Motor Drive Circuit (TX)

1. Function

The stepping motor works for reception and copy.
2. Motor

During motor driving, pin 131 of ASIC IC1 becomes high level, IC401 10pin becomes low level, and Q402 turns ON. As a result, +24 V is supplied to the motor coil.
Stepping pulses are output from ASIC IC1 pins, 131, 125, 128~130, causing driver IC402 pins, 16~13 to drive the Motor Coil. The motor coil is energized sequentially in 2 phase increments, which causes a 1 -step rotation. The timing chart is below.

Stepping Monitor Timing Chart

- 2-2 Phase

- 1-2 Phase

Stepping Motor Drive Mode

Function	Mode	Phase Pattern	Speed
Copy	Fine, Photo	$1-2$	$432 \mathrm{pps}(\mathrm{t}=1 / 432)$
	Super Fine	$1-2$	$216 \mathrm{pps}(\mathrm{t}=1 / 216)$
	Standard	$1-2$	$432 \mathrm{pps}(\mathrm{t}=1 / 432)$
	Fine, Photo	$1-2$	$432 \mathrm{pps}(\mathrm{t}=1 / 432)$
	Super Fine	$1-2$	$216 \mathrm{pps}(\mathrm{t}=1 / 216)$
Document Feed	-	$1-2$	$432 \mathrm{pps}(\mathrm{t}=1 / 432)$
Stand-by	-	All phases are currently off.	None

When the motor suspends while it is in the sending mode (about 70~80 msec), pin 131 of ASIC IC1 becomes a low level and Q402 turns OFF. When the system is in the stand-by mode, all of the motor drive transistors turn OFF. Consequently, the motor current stops.

6.5. Sensors and Switches

All of the sensor and switches are shown below.

Sensor Circuit Location	Sensor	Sensor or Switch Name	Error Message
Operation Panel	SW337	Document top sensor	[REMOVE DOCUMENT]
	SW338	Document set sensor	[CHECK DOCUMENT]
Sensor P.C.Board	SW502	Cover Open sensor	[CHECK COVER]
	SW501	Film Detection sensor	[FILM EMPTY] [CHECK FILM]
Analog Board	SW101	Hook switch	-
Interface Board	PS401	Paper Top sensor	[PAPER JAMMED]

Note:

See 10Test Mode (P.60). (\#815: Sensor Check)

Sensor Locations

6.5.1. Document Top Sensor (SW337)

When a document is brought to the read position, the SW turns ON, and the input signal of IC301-6 pin (Operation Board) becomes a low level. When there is no document at the read position, the SW turns OFF, and the input signal of IC301-6 pin (Operation Board) becomes a high level.

	SW	Signal (IC301-6 pin)
Out of the Read Position	OFF	High level
At the Read Position	ON	Low level

6.5.2. Document Set Sensor (SW338)

When a document is set, the SW turns ON, and the input signal of IC301-9 pin (Operation Board) becomes a low level. When there is no document, the SW turns ON, and the input signal of IC301-9 pin (Operation Board) becomes a high level.

	SW	Signal (IC301-9 pin)
No document	OFF	High level
Set document	ON	Low level

6.5.3. PAPER TOP SENSOR (PS401)

When the recording paper is loaded on the print head, the shelter plate shuts the sensor light, and the photo transistor turns OFF. The input signal of IC5-65 pin becomes a high level. Usually, the shelter plate is lifted, the photo transistor turns ON, and the input signal of IC1-102 pin becomes a low level

6.5.4. Cover Open Sensor (SW502)

When the u-TURN BLOCK is closed, the SW becomes ON, and the input signal of IC1-131 pin (Digital Board) becomes a low level. When the cover is opened, the SW becomes OFF, and the input signal of IC1-131 (Digital Board) pin becomes a high level.

	SW	Signal (IC5-66 pin)
Cover is opened	OFF	High level
Cover is closed	ON	Low level

6.5.5. Hook Switch (SW101)

When the handset is lifted, the switch turns ON, and the signal at pin 43 of IC1 becomes low.
When the handset is returned, the switch turns OFF, and the signal at pin 43 of IC1 becomes high.

	SW	Signal (IC1-43 pin)
ON-Hook	ON	Low level
OFF-Hook	OFF	High level

6.6. Modem Section

6.6.1. Function

The unit uses a 1 chip modem (IC5) that serves as an interface between the control section for FAX transmission and reception and the telephone line. During a transmitting operation, the digital image signals are modulated and sent to the telephone line. During a receiving operation, the analogue image signals which are received via the telephone line are demodulated and converted into digital image signals. The communication format and procedures for FAX communication are standardized by ITU-T. This 1 chip modem (IC5) has hardware which sends and detects all of the necessary signals for FAX communication. It can be controlled by writing commands from the CPU (IC1: inside ASIC) to the register in the modem (IC5). This modem (IC5) also sends DTMF signals, and detects a busy tone and dial tones.

Overview of Facsimile Communication Procedures (ITU-T Recommendation):

1. ON CCITT (International Telegraph and Telephone Consultative Committee)

The No. XIV Group of ITU-T, one of the four permanent organizations of the International Telecommunications Union (ITU), investigates and make recommendations on international standards for facsimiles.
2. Definition of Each Group

- Group I (G1)

Official A-4 size documents without using formats which reduce the band width of a signal are sent over telephone lines.Determined in 1968.
Transmission for about 6 minutes at a scanning line density of 3.85 lines $/ \mathrm{mm}$.

- Group II (G2)

Using reduction technology in the modulation/demodulation format, an A-4 size document is sent at an official scanning line density of 3.85 lines $/ \mathrm{mm}$ for about 3 minutes.
Methods to suppress redundancy are not used.
Determined in 1976.

- Group III (G3)

Method of suppressing redundancy in the image signal prior to modulation is used. An A-4 size document is sent within about one minute.
Determined in 1980.

- Group IV (G4)

Transmission is via the data network. A method is provided for suppressing redundancy in signals prior to transmission, and error-free reception of transmission is possible.
The scope of these facsimile applications is not limited simply to transmission of written statements. Through symbiotic linkages with other communication methods, it can be expected to expand to include integrated services.

3. Facsimile Call Time Series

As shown in the following diagram, the facsimile call time series is divided into five phases.

Phase A: Call setting
Call setting can be manual/automatic
Phase B: Pre-message procedure
Phase B is a pre-processing procedure and sequence for confirming the status of the terminal, transmission route, etc., and for terminal control. It implements terminal preparation status, determines and displays terminal constants, confirms synchronization status, etc. and prepares for transmission of facsimile messages
Phase C: Message transmission
Phase C is the procedure for the transmitting facsimile messages
Phase D: Post message procedure
Phase D is the procedure for confirming that the message is completed and received. For continuous transmission, phase B or phase C is repeated for transmission.
Phase E: Call retrieval
Phase E is the procedure for call retrieval, that is for circuit disconnection.
4. Concerning Transmission Time

Transmission Time $=$ Control Time + Image Transmission Time + Hold Time

Transmission time consists of the following.

Control time:

This is time at the start of transmission when the functions at the sending and receiving sides are confirmed, the transmission mode is established, and transmission and reception are synchronized.
Image transmission time:
This is the time required for the transmission of document contents (image data). In general, this time is recorded in the catalog, etc.
Hold time:
This is the time required after the document contents have been sent to confirm that the document was actually sent, and to check for telephone reservations and/or the existence of continuous transmission.

5. Facsimile Standards

Item	Telephone Network Facsimile
	G3 Machine
Connection Control Mode	Telephone Network Signal Mode
Terminal Control Mode	T. 30 Binary
Facsimile Signal Format	Digital
Modulation Mode	PSK (V. 27 ter) or QAM (V. 29)
Transmission Speed	300 bps (Control Signal) $2400, ~ 4800, ~ 7200, ~ 9600 b p s ~(F A X ~ S i g n a l) ~$
Redundancy Compression Process (Coding Mode)	1 dimension: MH Mode 2 dimension: MR Mode (K=2.4) , MMR
Resolution	Main Scan: 8 pel/mm Sub Scan: 3.85, 7.71/mm
Line Synchronization Signal	EOL Signal
1 Line Transmission Time [ms/line]	Depends on the degree of data reduction. Minimum Value: 10, 20 Can be recognized in 40ms.

6. Explanation of Communication and Compression Technology

a. G3 Communication Signals (T. 30 Binary Process)

For G3 Facsimile communication, this is the procedure for exchanging control signals between the sending and receiving machines both before and after transmission of image signals.
Control signals at 300 bps FSK are: $1850 \mathrm{~Hz} \ldots .0,1650 \mathrm{~Hz} \ldots 1$.
An example of a binary process in G3 communication is shown below.
Transmitter Side Receiver Side

Explanation of Signals

Control signals are comprised mainly of 8-bit identification signals and the data signals added to them. Data signals are added to DIS and DCS signals
Signal.....DIS (Digital Identification Signal)
Identification Signal Format..... 00000001
Function:
Notifies the capacity of the receiving unit. The added data signals are as follows.

Signal.....DCS (Digital Command Signal)
Identification Signal Format.....X1000001

Example (Some models do not support the following items.):

Bit No.	DIS/DTC	DCS
1	Transmitter --- T.2 operation	
2	Receiver --- T.2 operation	Receiver --- T.2 operation
3	T.2 IOC = 176	T.2 IOC = 176
4	Transmitter --- T.3 operation	
5	Receiver --- T.3 operation	Receiver --- T.3 operation
6	Reserved for future T.3 operation features	
7	Reserved for future T.3 operation features.	
8	Reserved for future T.3 operation features.	
9	Transmitter --- T.4 operation	

\begin{tabular}{|c|c|c|}
\hline Bit No. \& DIS/DTC \& DCS \\
\hline 10 \& Receiver --- T. 4 operation \& Receiver --- T. 4 operation \\
\hline \(11,12,13,14\)
\(0,0,0,0\)
\(0,1,0,0\)
\(1,0,0,0\)
\(1,1,0,0\)
\(0,0,1,0\)
\(0,1,1,0\)
\(1,0,1,0\)
\(1,1,1,0\)
\(0,0,0,1\)
\(0,1,0,1\)
\(1,0,0,1\)
\(1,1,0,1\)
\(0,0,1,1\)
\(0,1,1,1\)
\(1,0,1,1\)
\(1,1,1,1\) \& \begin{tabular}{l}
Data signaling rate \\
V. 27 ter fall back mode \\
V. 27 ter \\
V. 29 \\
V. 27 ter and V. 29 \\
Not used \\
Reserved \\
Not used \\
V. 27 ter and V. 29 and V. 33 \\
Not used \\
Reserved \\
Not used \\
V. 27 ter and V. 29 and V. 33 and V. 17 \\
Not used \\
Reserved \\
Not used \\
Reserved
\end{tabular} \& \begin{tabular}{l}
Data signaling rate 2400 bit/s, V. 27 ter 4800 bit/s, V. 27 ter 9600 bit/s, V. 29 7200 bit/s, V. 29 14400 bit/s, V. 33 12000 bit/s, V. 33 \\
Reserved \\
Reserved \\
14400 bit/s, V. 17 \\
12000 bit/s, V. 17 \\
\(9600 \mathrm{bit} / \mathrm{s}, \mathrm{V} .17\) \\
7200 bit/s, V. 17 \\
Reserved \\
Reserved \\
Reserved \\
Reserved
\end{tabular} \\
\hline 15 \& R8×7.7 lines/mm and/or \(200 \times 200\) pels/25.4mm \& R8×7.7 lines/mm and/or \(200 \times 200\) pels/25.4mm \\
\hline 16 \& Two-dimensional coding capability \& Two-dimensional coding capability \\
\hline \[
\begin{aligned}
\& 17,18 \\
\& (0,0) \\
\& (0,1) \\
\& (1,0) \\
\& (1,1)
\end{aligned}
\] \& \begin{tabular}{l}
Recording width capabilities \\
1728 picture elements along scan line length of
\[
215 \mathrm{~mm} \pm 1 \%
\] \\
1728 picture elements along scan line length of \(215 \mathrm{~mm} \pm 1 \%\) \\
2048 picture elements along scan line length of \(255 \mathrm{~mm} \pm 1 \%\) \\
2432 picture elements along scan line length of \(303 \mathrm{~mm} \pm 1 \%\) \\
1728 picture elements along scan line length of \(215 \mathrm{~mm} \pm 1 \%\) \\
2048 picture elements along scan line length of \(255 \mathrm{~mm} \pm 1 \%\) \\
Invalid
\end{tabular} \& \begin{tabular}{l}
Recording width \\
1728 picture elements along scan line length of \(215 \mathrm{~mm} \pm 1 \%\) \\
2432 picture elements along scan line length of \(303 \mathrm{~mm} \pm 1 \%\) \\
2048 picture elements along scan line length of \(255 \mathrm{~mm} \pm 1 \%\) \\
Invalid
\end{tabular} \\
\hline \[
\begin{aligned}
\& \hline 19,20 \\
\& (0,0) \\
\& (0,1) \\
\& (1,0) \\
\& (1,1)
\end{aligned}
\] \& \begin{tabular}{l}
Maximum recording length capability A4 (297 mm) \\
Unlimited A4 (297 mm) and B4 (364 mm) Invalid
\end{tabular} \& \begin{tabular}{l}
Maximum recording length \\
A4 (297 mm) \\
Unlimited \\
B4 (364 mm) \\
Invalid
\end{tabular} \\
\hline \(21,22,23\)
\((0,0,0)\)
\((0,0,1)\)
\((0,1,0)\)
\((1,0,0)\)
\((0,1,1)\)
\((1,1,0)\)
\((1,0,1)\)
\((1,1,1)\) \& ```
Minimum scan line time capability of the receiver
20 ms at \(3.85 \mathrm{l} / \mathrm{mm}: \mathrm{T}_{7.7}=\mathrm{T}_{3.85}\)
40 ms at \(3.85 \mathrm{l} / \mathrm{mm}: \mathrm{T}_{7.7}=\mathrm{T}_{3.85}\)
10 ms at \(3.85 \mathrm{l} / \mathrm{mm}: \mathrm{T}_{7.7}=\mathrm{T}_{3.85}\)
5 ms at \(3.85 \mathrm{l} / \mathrm{mm}: \mathrm{T}_{7.7}=\mathrm{T}_{3.85}\)
10 ms at \(3.85 \mathrm{I} / \mathrm{mm}: \mathrm{T}_{7.7}=1 / 2 \mathrm{~T}_{3.85}\)
20 ms at \(3.85 \mathrm{l} / \mathrm{mm}: \mathrm{T}_{7.7}=1 / 2 \mathrm{~T}_{3.85}\)
40 ms at \(3.85 \mathrm{l} / \mathrm{mm}: \mathrm{T}_{7.7}=1 / 2 \mathrm{~T}_{3.85}\)
0 ms at \(3.85 \mathrm{l} / \mathrm{mm}: \mathrm{T}_{7.7}=\mathrm{T}_{3.85}\)
``` \& Minimum scan line time
20 ms
40 ms
10 ms
5 ms

0 ms <br>
\hline 24 \& Extend field \& Extend field <br>
\hline 25 \& $2400 \mathrm{bit} / \mathrm{s}$ handshaking \& 2400 bit/s handshaking <br>
\hline 26 \& Uncompressed mode \& Uncompressed mode <br>
\hline 27 \& Error correction mode \& Error correction mode <br>
\hline 28 \& Set to "0". \& Frame size 0 = 256 octets $1=64$ octets <br>
\hline 29 \& Error limiting mode \& Error limiting mode <br>
\hline 30 \& Reserved for G4 capability on PSTN \& Reserved for G4 capability on PSTN <br>
\hline 31 \& T. 6 coding capability \& T. 6 coding enabled <br>
\hline 32 \& Extend field \& Extend field <br>

\hline | $\begin{aligned} & 33 \\ & (0) \end{aligned}$ |
| :--- |
| (1) | \& Validity of bits 17, 18 Bits 17, 18 are valid Bits 17, 18 are invalid \& | Recording width |
| :--- |
| Recording width indicated by bits 17, 18 |
| Recording width indicated by this field bit information | <br>

\hline 34 \& Recording width capability 1216 picture elements along scan line length of $151 \pm \mathrm{mm} 1 \%$ \& Middle 1216 elements of 1728 picture elements <br>
\hline 35 \& Recording width capability 864 picture elements along scan line length of $107 \pm \mathrm{mm} 1 \%$ \& Middle 864 elements of 1728 picture elements <br>
\hline 36 \& Recording width capability 1728 picture elements along scan line length of $151 \pm \mathrm{mm} 1 \%$ \& Invalid <br>
\hline 37 \& Recording width capability 1728 picture elements along scan line length of $107 \pm \mathrm{mm} 1 \%$ \& Invalid <br>
\hline 38 \& Reserved for future recording width capability. \& <br>
\hline
\end{tabular}

| Bit No. | DIS/DTC | DCS |
| :---: | :---: | :---: |
| 39 | Reserved for future recording width capability. |  |
| 40 | Extend field | Extend field |
| 41 | R8×15.4 lines/mm | R8×15.4 lines/mm |
| 42 | $300 \times 300$ pels/25.4 mm | $300 \times 300$ pels/25.4 mm |
| 43 | R16×15.4 lines/mm and/or $400 \times 400$ pels/25.4 mm | R16×15.4 lines/mm and/or $400 \times 400$ pels/ 25.4 mm |
| 44 | Inch based resolution preferred | Resolution type selection " 0 ": neritic based resolution "1": inch based resolution |
| 45 | Metric based resolution preferred | Don't care |
| 46 | Minimum scan line time capability for higher resolutions "0": $\mathrm{T}_{15.4}=\mathrm{T}_{7.7} \quad$ "1": $\mathrm{T}_{15.4}=1 / 2 \mathrm{~T}_{7.7}$ | Don't care |
| 47 | Selective Polling capability | Set to "0". |
| 48 | Extend field | Extend field |

Note 1 - Standard facsimile units conforming to T. 2 must have the following capability: Index of cooperation (IOC)=264.
Note 2 - Standard facsimile units conforming to T. 3 must have the following capability: Index of cooperation (IOC)=264.
Note 3 - Standard facsimile units conforming to T. 4 must have the following capability: Paper length=297 mm .

| Signal | Identification Signal Format | Function |
| :---: | :---: | :---: |
| Training 1 |  | A fixed pattern is transmitted to the receiving side at a speed (2400 to 14400 bps ) designated by DCS, and the receiving side optimizes the automatic equalizer, etc., according to this signal. |
| TCF (Training Check) |  | Sends 0 continuously for 1.5 seconds at the same speed as the training signal. |
| CFR (Confirmation to Receive) | X0100001 | Notifies the sending side that TCF has been properly received. If TCF is not properly received, FTT (Failure To Train) X0100010 is relayed to the sender. The sender then reduces the transmission speed by one stage and initiates training once again. |
| Training 2 |  | Used for reconfirming the receiving side like training 1. |
| Image Signal | Refer to the next page. | - - |
| RTC (Return to Control) |  | Sends 12 bits ( $0 . . .01 \times 6$ times) to the receiver at the same speed as the image signal and notifies completion of transmission of the first sheet. |
| $\begin{aligned} & \mathrm{EOP} \\ & \text { (End of Procedure) } \end{aligned}$ | X1110100 | End of one communication |
| MCF <br> (Message Confirmation) | X0110001 | End of 1 page reception |
| DCN (Disconnect) | X1011111 | Phase E starts. |
| MPS <br> (Multi-Page Signal) | X1110010 | Completion of transmission of 1 page. If there are still more documents to be sent, they are output instead of EOP. After MCF reception, the sender transmits an image signal of the second sheet. |
| PRI-EOP <br> (Procedural Interrupt-EOP) | X1111100 | If there is an operator call from the sender, it is output after RTC. |
| PIP <br> (Procedural Interrupt Positive) | X0110101 | This is output when an operator call is received. |

## b. Redundancy Compression Process Coding Mode

This unit uses one-dimensional MH format.
a) Document

(b) Part of document
(c) Run length and image signals equivalent to (b)
(d) Codification of $000110111101010 \quad 011 \quad 110101 \quad 11 \quad 001000 \quad 011 \quad 101010$ (c) according to (White 400) (Black 4) (White 15) (Black 2) (White 12) (Black 4) (White 16) MH formula


| Modified Huffman (MH) Code |  |  |
| ---: | :--- | :--- |
| Run length | Code for <br> White Line | Code for <br> Black Line |
| 0 | 00110101 | 000011011 |
| 1 | 000111 | 010 |
| 2 | 0111 | 11 |
| 3 | 1000 | 10 |
| 4 | 1011 | 011 |
| 5 | 1100 | 0011 |
| 6 | 1110 | 0010 |
| 7 | 1111 | 00011 |
| 8 | 10011 | 000101 |
| 9 | 10100 | 000100 |
| 10 | 00111 | 0000100 |
| 11 | 01000 | 0000101 |
| 12 | 001000 | 0000111 |
| 13 | 000011 | 00000100 |
| 14 | 110100 | 00000111 |
| 15 | 110101 | 000011000 |
| 16 | 101010 | 0000010111 |
| 17 | 101011 | 0000011000 |
| 18 | 0100111 | 0000001000 |


| 11 | 0100111 | 000101 | 000011 | 10 |
| :--- | :---: | :---: | :---: | :---: |
| (Black 2) (White 18) | (Black 8) | (White 13) | (Black 3) |  |

(c) Total bit number before MH codification (497 bit)
(d) Total bit number after MH codification ( 63 bit)

### 6.6.2. Modem Circuit Operation

The modem (IC5) has all the hardware satisfying the CCITT standards mentioned previously.
When the ASIC IC1 (61) is brought to a low level, the modem (IC5) is chip-selected and the resistors inside IC are selected by the select signals from ASIC (IC1) ADR0-ADR4. The commands are written through the data bus, and all the processing is controlled by the ASIC (IC1) according to CCITT procedures. The INT signal dispatched from IRQn (pin 100 of IC5) to ASIC (IC1) when the transmission data is accepted and the received data is demodulated, the ASIC (IC1) implements post processing. This modem (IC5) has an automatic application equalizer.
With training signal 1 or 2 during G3 reception, it can automatically establish the optimum equalizer. The modem (IC5) operates using the 32.256 MHz clock (X4).

## 1.Facsimile Transmission

The digital image data on the data bus is modulated in the modem (IC5), and sent from pin 56 via Analogue SW IC11, amplifier IC10 and the NCU section to the telephone line.

Refer to 12.5.6.1.Check Sheet for Signal Route (P.124).

## 2.Facsimile Reception

The analogue image data which is received from the telephone line passes through the NCU section and enters pin 47 of the modem (IC5). The signals that enter pin 47 of the modem (IC5) are demodulated in the board to digital image signals, then placed on the data bus.
In this case, the image signals from the telephone line are transmitted serially. Hence, they are placed on the bus in 8 bit units. Here, the internal equalizer circuit reduces the image signals to a long-distance receiving level.
This is designed to correct the characteristics of the frequency band centered about 3 kHz and maintain a constant receiving sensitivity. It can be set in the service mode.

Refer to 12.5.6.1.Check Sheet for Signal Route (P.124)
3.DTMF Transmission (Monitor tone)

The DTMF signal generated in the modem (IC5) is output from pin 56 , and is then sent to the circuit on the same route as used for facsimile transmission.

Refer to 12.5.6.1.Check Sheet for Signal Route (P.124).
(DTMF Monitor Tone)
Refer to 12.5.6.1.Check Sheet for Signal Route (P.124).
4.Call Tone Transmission

This is the call signal which is generated in the ASIC (IC1) and sent to the speaker.

Refer to 12.5.6.1.Check Sheet for Signal Route (P.124)

## 5.Busy/Dial Tone Detection

The path is the same as FAX receiving. When it is detected, the carrier detect bit of the resistor in the modem (IC5) becomes 1 , and this status is monitored by the ASIC (IC1).

## 6.Caller ID Detection

The caller ID signal which is received from the telephone line/passes through IC101 pin (2-1). And it enters pin 50 of the modem (IC5).

### 6.7. NCU Section

### 6.7.1. General

NCU is the interface with the telephone line. It is composed of Bell detection circuit, Pulse dial circuit, Line amplifier and sidetone circuits. The following is a brief explanation of each circuit.

### 6.7.2. EXT. TEL. Line Relay (RLY101)

1. Circuit Operation

Normally, this relay switches to the external telephone side (break) and switches to the tel line side (make) while OFF-HOOK.
$\{$ IC1 (44) High Level $\rightarrow$ CN7 (15) High Level $\} \rightarrow$ CN101 (3) High Level $\rightarrow$ Q106 ON $\rightarrow$ RLY101 (make)

### 6.7.3. Bell Detection Circuit

## 1. Circuit Operation

The signal waveform for each section is indicated below. The signal (low level section) input to pin 19 of ASIC IC1 on the digital board is illustrated.

Between the Tip and Ring

Between PC102 (1) and (2)


PC102 (4)/ASIC IC1 (19)


TEL LINE $\rightarrow$ PC102 $(1,2 \rightarrow 4) \rightarrow$ IC1 (19): Bell

### 6.7.4. Pulse Dial Circuit and ON/OFF Hook Circuit

IC1 (130) $\rightarrow$ LOW LEVEL (MAKE) $\rightarrow$ Q106 ON (MAKE) $\rightarrow$ RLY101 ON (MAKE) $\rightarrow$ TEL LINE IC1 (130) $\rightarrow$ HIGH LEVEL (BREAK) $\rightarrow$ Q106 OFF (BREAK) $\rightarrow$ RLY101 OFF (BREAK) $\rightarrow$ TEL LINE

### 6.7.5. Line Amplifier and Side Tone Circuit

## 1. Circuit Operation

The reception signal output from the line transformer T101 is input to pin (2) of IC101 via C108 and R109 and then the signal is amplified at pin (2) of IC101 and sent to the reception system at 0dB.

The transmission signal is output from CN101 (6) and transmitted to T101 via R114. If the side tone circuit is not applied, the transmission signal will return to the reception amplifier via C108 and R109. When the side tone circuit is active, the signal output from IC101 pin (1) passes through R113, C110, C109 and R110 and goes into the amplifier IC101 pin (3). This circuit is used to cancel the transmission return signal.

## Side Tone Circuit



### 6.7.6. Calling Line Identification Circuit (FSK)

## 1. Function

This unit is compatible with the Caller ID service offered by your local telephone company. To use this feature, you must subscribe to a Caller ID service. The data for the Caller ID from the telephone exchange is sent during the interval between the first and second rings of the bell signal. The data from the telephone exchange is a modem signal which is modulated in an FSK (Frequency Shift Keying) format. Data "0" is a 1200 Hz sine wave, and data 1 a 2200 Hz sine wave.
There are two type of the message format which can be received:i.e.the single data message format and multiple data message format.
The multiple data format allows to transmit the name and data code information in addition to the time and telephone number data.

When there is multiple data in the unit, the name or telephone number are displayed.
2. Circuit Operation:

The Caller ID signal input from TEL LINE is processed with MODEM (IC5).
Refer to 12.5.6.1.Check Sheet for Signal Route (P.124) for the route of Caller ID signal.


## - Multiple data message



> -1 word = All 8 bit data
> -Message Type = Fixed value " 10000000 "
> -Message Length Word = number of the Parameter Message word
> -Parameter Type Word = Kind of data (ex. the time, phone number)
> -Parameter Length Word = number of the Parameter data word
> -Parameter Word $(s)=$ the data value

### 6.7.7. Calling Line Identification Circuit (DTMF)

## 1. Function

This unit is compatible with the Caller ID service offered by your local telephone company. To use this feature, you must subscribe to a Caller ID service. The data for the Caller ID from the telephone exchange is sent before the first ring signal. The data from the telephone exchange is sent by DTMF signal.
2. Circuit Operation:

The Caller ID signal from TEL LINE is processed with MODEM (IC5).
Refer to 12.5.6.1.Check Sheet for Signal Route (P.124) for the route of Caller ID (DTMF) signal.

## Timing Chart

DTMF code calling number


### 6.8. ITS (Integrated telephone System) and Monitor Section

### 6.8.1. General

The general ITS operation is performed by the special IC505 which has a handset circuit. The alarm tone, the key tone, and the beep are output from the ASIC IC1 (digital board). During the pulse dial operation, the monitor tone is output from the ASIC IC1.

### 6.8.2. Telephone Monitor

## 1. Function

This is the function when you are not holding the handset and can hear the caller's voice from the line.
2. Signal path

Refer to 12.5.6.1.Check Sheet for Signal Route (P.124).

### 6.8.3. Handset Circuit

1. Function

This circuit controls the conversation over the handset, i.e. the transmitted and received voices to and from the handset.
2. Signal path

Refer to 12.5.6.1.Check Sheet for Signal Route (P.124).

### 6.8.4. Monitor Circuit for Each Signals

1. Function

This circuit monitors various tones, such as 1 DTMF tone, 2 Alarm/Beep/Key tone/Bell.
2. Signal path

Refer to 12.5.6.1.Check Sheet for Signal Route (P.124).

### 6.9. Operation Board Section

The unit consists of a LCD (Liquid crystal display), KEYs and LEDs (light-emitting diodes). They are controlled by the Gate Array (IC301) and ASIC (IC1: on the Digital BOARD).
The key matrix table is shown below.


## Key Matrix

1) Key Matrix

|  | KINO | KIN1 | KIN2 | KIN3 | KIN4 | KIN5 | KIN6 | KIN7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KSL0 | $\begin{gathered} \text { SW301 } \\ 1 \end{gathered}$ | $\begin{gathered} \text { SW305 } \\ 2 \end{gathered}$ | $\begin{gathered} \text { SW309 } \\ 3 \end{gathered}$ | SW313 REDIAL/PAUSE | SW317 CALLER ID | $\begin{gathered} \text { SW322 } \\ \text { SET } \end{gathered}$ | $\begin{aligned} & \text { SW327 } \\ & \text { SKEY4 } \end{aligned}$ | SW335 START |
| KSL1 | $\begin{gathered} \text { SW304 } \\ 4 \end{gathered}$ | $\begin{gathered} \text { SW306 } \\ 5 \end{gathered}$ | $\begin{gathered} \text { SW310 } \\ 6 \end{gathered}$ | SW314 <br> FLASH | SW318 <br> MENU | SW323 | $\begin{aligned} & \text { SW328 } \\ & \text { SKEY5 } \end{aligned}$ | SW333 <br> STOP |
| KSL2 | $\begin{gathered} \text { SW302 } \\ 7 \end{gathered}$ | $\begin{gathered} \text { SW307 } \\ 8 \end{gathered}$ | $\begin{gathered} \text { SW311 } \\ 9 \end{gathered}$ | SW315 HANDSET MUTE | SW319 | SW324 SKEY1 | $\begin{aligned} & \text { SW329 } \\ & \text { SKEY6 } \end{aligned}$ | SW334 COPY |
| KSL3 |  |  |  | SW336 <br> BROADCAST | SW321 | SW326 <br> SKEY3 |  |  |
| KSL4 | $\begin{gathered} \text { SW303 } \\ * \end{gathered}$ | $\begin{gathered} \text { SW308 } \\ 0 \end{gathered}$ | $\begin{gathered} \text { SW312 } \\ \# \end{gathered}$ | SW316 <br> MONTOR/ | $\begin{gathered} \text { SW320 } \\ 4 \end{gathered}$ | $\begin{aligned} & \text { SW325 } \\ & \text { SKEY2 } \end{aligned}$ |  | $\begin{aligned} & \text { SW332 } \\ & \text { AUTO } \\ & \text { ANSWER } \end{aligned}$ |

2) $L E D$

## LED2

 AUTO ANSWERLED Port Setting
LED ON : Low , LED OFF : High
3) SENSOR

| SENSOR Name | Type | Sensor Setting |
| :--- | :---: | :--- |
| DOCUMENT TOP | Mecha SW | XLED9 = High : DOCUMENT TOP undetect <br> XLED9 = Low : DOCUMENT TOP detect |
| DOCUMENT SET | Mecha SW | XLED10 = High : DOCUMENT not available <br> XLED10 = Low : DOCUMENT available |

### 6.10. LCD Section

The Gate Array (IC301) works only for writing the ASCII code from the data bus (D4~D7). V0 is supplied for the crystal drive. R310, R312, R313 and R329 are density control resistors.
Consequently, in this unit, the timing (positive clock) is generated by the LCD interface circuitry in the gate array (IC301).

## Circuit Diagram



## Timing Chart



| Dlsplay mode | Density | Normal | Dark |
| :---: | :--- | :---: | :---: |
| 2 lines (X1. 0) | LED1 (IC301-22pin) | H | L |
|  | XLED15 (IC301-21pin) | L | L |
|  | XLED14 (IC301-20pin) | $\mathrm{Hi}-\mathrm{Z}$ | L |
|  | H | H |  |
|  | LED1 | $\mathrm{Hi}-\mathrm{Z}$ | L |
|  | XLED15 | $\mathrm{Hi}-\mathrm{Z}$ | Hi .Z |
|  | XLED14 |  |  |

### 6.11. Power Supply Board Section

This power supply board uses the switching regulator method.
Block Diagram


## [Input Circuit]

The input current goes into the input rectifier circuit through the filter circuit. The filter circuit decreases the noise voltage and the noise electric field strength.

## [Rectifier Circuit]

The input current is rectified by D101, D102, D103 and D104 and charges C106 to make DC voltage. Then it supplies power to the converter circuit.

## [Kick-on voltage circuit]

Bias is applied to the Q101 gate via this circuit when the AC power is turned on and Q101 begins operating.


The following is an overview of how the power supply unit is controlled.
The control method of this power supply unit is pulse width modulation.
When $Q_{1}$ is $O N$, the energy is charged in the transfer primary coil according to $E_{1}$. When $Q_{1}$ is OFF, the energy is output from the secondary transfer as follows.

$$
\mathrm{L} \rightarrow \mathrm{D}_{1} \rightarrow \mathrm{Load} \rightarrow \mathrm{~L}
$$

Then the power is supplied to the Load. When $Q_{1}$ is $O N$, power is not output from the secondary side. The output voltage is fed back in the control IC according to the error amp rectifier. Then depending on how $\mathrm{T}_{\mathrm{ON}}$ is controlled, stabilization occurs. Also, when the current load becomes too large, in order to decrease the voltage output, the increase in $\tau$ is controlled and the output voltage is stabilized.
Therefore, basically the timing: Ton/Toff of Q1 controls the output voltage.
Output/Input voltage value of ratio


## [Surge Absorber Circuit]

This circuit is for absorbing surge voltage generated by the transformer.
[Control Circuit and Detecting Circuit]
The control circuit amplifies the output with increased voltage detected in the error detecting circuit. Then it drives the main transistor.
In this power supply, the duty ratio is defined by changing the ON period of the main transistor.
This is shown as follows.
When the output voltage of the 24 V circuit increases, the current of the photo coupler PC101 increases, the pulse width of the output control IC becomes narrower and the ON period of Q101 becomes shorter.
[Over Current Limiter (O.C.L)]
The highest drain current (Q101) is limited by a limiter circuit (IC101) of 24 V . The 24 V output is limited by this circuit.

## [Over Voltage Circuit]

If the 24 V output increases because the error detecting circuit or control circuit is broken, IC101 will recognize this signal and output becomes 0 V .

Dummy load method (to quickly check the power supply output)
Refer to 12.5.7.Power Supply Board Section (P.126).

## 7 Location of Controls and Components

### 7.1. Overview


(1) Speaker
(2) Document guides
(3) Paper tray
(4) Paper support
(5) Recording paper entrance
(6) Recording paper exit
(7) Tension plate
(8) Front cover
(9) Document exit
(10) Document entrance
(11) Green button (Back cover release button)
(12) Back cover

### 7.2. Control Panel


(1) [FLASH]

- To access special telephone services or for transferring extension calls.
- The flash time can be changed (feature \#72 on P.99).
(2) [REDIAL] [PAUSE]
- To redial the last number dialed. If the line is busy when you make a phone call using the [MONITOR] button, or when you send a fax, the unit will automatically redial the number 2 or more times.
- To insert a pause during dialing.
(3) [CALLER ID]
- To use Caller ID features.
(4) [MENU]
- To start or exit programming.
(5) Navigator key


## 

- To adjust volume.
- To search for a stored item.
(6) [SET]
- To store a setting during programming.
(7) [AUTO ANSWER]
- To turn the auto answer setting ON/OFF.
(8) [STOP]
- To stop an operation or programming session.
- To erase a character/number.
(9) [TONE]
- To change from pulse to tone temporarily during dialing when your line has rotary pulse service.
(Refer to 12.4.2.Program Mode Table (P.99).)
(10) [HANDSET MUTE]
- To mute your voice during a conversation. Press again to resume the conversation.
(11) [MONITOR]
- To initiate dialing without lifting the handset.
(12) Station keys
- To use the one touch dial feature.
(13) [BROADCAST]
- To send a document to multiple parties.
(14) [FAX START]
- To send or receive a fax.


## (15) [COPY]

- To copy a document.


## 8 Installation Instructions

### 8.1. Installation Space

The space required to install the unit is shown below.
The dimensions given are necessary for the unit to operate efficiently. (When the recording paper is not inserted to the unit.)


Note:

- Avoid excessive heat or humidity.
- Use the unit within the following ranges of temperature and humidity.
- Ambient temperature: $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$
- Relative humidity: $20 \%$ to $80 \%$ (without condensation)
- Avoid direct sunlight.
- Do not install near devices which contain magnets or generate magnetic fields.
- Do not subject the unit to strong physical shock or vibration.
- Keep the unit clean. Dust accumulation can prevent the unit from functioning properly.
- To protect the unit from damage, hold both sides when you move it.


### 8.2. Connections

Caution:

- When you operate this product, the power outlet should be near the product and easily accessible.
(1) Telephone line cord
-Connect to a single telephone line jack.
(2) Power cord
-Connect to a power outlet (220-240 V, 50/60 Hz).
(3) [EXT] jack
- You can connect an answering machine or a telepone. Remove the stopper if attached.
(4) Answering machine (not included)



## Note:

- To avoid malfunction, do not position the fax machine near appliances such as TVs or speakers which generate an intense magnetic field.
- If any other device is connected to the same telephone line, this unit may disturb the network condition of the device.
- If you use the unit with a computer and your internet provider instructs you to install a filter ( ${ }^{(5)}$ ), please connect it as follows.



### 8.3. Installing the Ink Film

1. Open the front cover by pulling up the centre part.

2. Release the back cover by pushing the green button (1)).

- You can also release the back cover by pushing in the green lever (②).


3. Open the back cover.

4. Insert the blue gear of the ink film roll into the front left slot of the unit (3) and the white gear of the ink film roll into the rear left slot of the unit (4))

- The ink film is safe to touch and will not rub off on your hands like carbon paper.
- Make sure the blue gear ((3)) and white gear (4)) are installed as shown.


5. Turn the blue gear (5)) in the direction of the arrow until the ink film is tight (6) and at least one layer of ink film is wrapped around the blue core ( (7)).


## Correct



Incorrect

6. Close the back cover securely by pushing down on the dotted area at both ends (8)).

7. Close the front cover securely.


### 8.5. Paper Support

Insert the paper support (©) into the slot to the right of the recording paper exit ((2)). then into the left slot (3).


### 8.6. Installing the Recording Paper

The unit can hold up to 50 sheets of $64 \mathrm{~g} / \mathrm{m}^{2}$ to $80 \mathrm{~g} / \mathrm{m}^{2}$ paper.

1. Fan the paper to prevent paper jams.

2. Pull the tension plate forward (1)) and insert the paper gently, print-side down ((2)).

- The paper should not be over the tab (3)).

- If the paper is not inserted correctly, remove all of the installed paper, and re-install it gently. Otherwise the paper may jam.

Correct


Note:

- Remove all of the installed paper before adding paper.


## Document requirements

## Minimum document size



## Maximum document size



## Effective scanning area

－Shaded area will be scanned．


## Document weight

－When faxing a single sheet：
$45 \mathrm{~g} / \mathrm{m}^{2}$ to $90 \mathrm{~g} / \mathrm{m}^{2}$
－When faxing a multiple sheet：
$60 \mathrm{~g} / \mathrm{m}^{2}$ to $80 \mathrm{~g} / \mathrm{m}^{2}$

## Note：

－Remove chips，staples or other fasteners．
－Do not send the following types of documents．（Make a copy of the document using another copier and send the copy．）
－Chemically treated paper such as carbon or carbonless duplicating paper
－Electrostatically charged paper
－Badly curled，creased or torn paper
－Paper with a coated surface
－Paper with a faint image
－Paper with printing on the opposite side that can be seen through the other side，such as newsprint
－Check that ink，paste or correction fluid has dried com－ pletely．
－To send a document with a width of less than 210 mm ，we recommend using a copy machine to copy the original docu－ ment onto A4 or letter－sized paper，than sending the copied document．

## 9 Operation Instructions

## 9．1．Setting Your Logo

You can program your logo（name，company name，etc．）so that it appears on the top of each page sent．

［HANDSET MUTE】【•】〔•】
1．［MENU］$\rightarrow$［\＃］［0］［2］$\rightarrow$［SET］


2．Enter your logo，up to 30 characters．See the following character table for details．$\rightarrow$［SET］
3．Press［MENU］to exit．
To select characters with the dial keypad

| Keypad | Characters |  |
| :---: | :---: | :---: |
| ［1］ | Space |  |
| ［2］ | A B C | 2 |
|  | a b c | 2 |
| ［3］ | D E F | 3 |
|  | d e f | 3 |
| ［4］ | G H I | 4 |
|  | g h i | 4 |
| ［5］ | J K L | 5 |
|  | j k l | 5 |
| ［6］ | M N O | 6 |
|  | m n － | 6 |
| 【7】 | $P \quad$ Q R | S 7 |
|  | p q r | S 7 |
| ［8］ | T U V | 8 |
|  | t u v | 8 |
| ［9］ | W X Y | Z 9 |
|  | w x y | z 9 |
| ［0］ | Space 0 |  |


| Keypad | Characters |
| :--- | :--- |
| 【＊】 | To switch between uppercase or <br> lowercase letters． |
| 【FLASH】 | Hyphen． |
| 【HANDSET <br> MUTE】 | To insert a space． |
| 【STOP】 | To delete a character． |

Note：
－To enter a character that is located on the same dial key as the previously entered character，you must first press［ $\mathbf{p} \mathbf{-}$ ］to move the cursor to the next space．

## To enter your logo

Example：＂BILL＂
1．Press［2］ 2 times．

## LOGO $=\mathrm{B}$

2．Press［4］ 3 times．

$$
\mathrm{LOGO}=\mathrm{B}
$$

3．Press［5］ 3 times．

## $\mathrm{LOGO}=\mathrm{BII}$

4．Press［ - ］to move the cursor to the next space and press［5］ 3 times．

## LOGO＝BIL㪯

## To correct a mistake

Press［ 4$]$ or $[\mathbf{~} \boldsymbol{-}$ ］to move the cursor to the incorrect char－ acter，and make the correction．
－To erase all of the characters，press and hold［STOP］．

## 10 Test Mode

The codes listed below can be used to perform simple checks for some of the unit's functions. When complaints are received from customers, they provide an effective tool for identifying the locations and causes of malfunctions. To do this, you set the Service mode (Refer to 11.1.2.Operation Flow (P.64).) first, then operate the below test items.


## Note:

The numbers in the boxes (XXX) indicate the keys to be input for the various test modes.

### 10.1. DTMF Signal Tone Transmit Selection

When set to $\mathrm{ON}(=1)$, the 12 keys and transmission frequencies are as shown.

| key | High Frequency (Hz) | key | Low Frequency (Hz) |
| :---: | :---: | :---: | :---: |
| $" 1 "$ | 697 | $" 5 "$ | 1209 |
| $" 2 "$ | 770 | $" 6 "$ | 1336 |
| $" 3 "$ | 852 | $" 7 "$ | 1477 |
| $" 4 "$ | 941 | $" 8 "$ | 1633 |

## Note:

After performing this check, do not forget to turn the setting off. Otherwise, dialing in DTMF signal will not work.

### 10.2. Button Code Table

| Code | Button Name | Code |  | Code | Button Name |
| :---: | :--- | :---: | :--- | :---: | :--- |
| 00 | NO INPUT | 64 | STATION1 | 31 | 1 |
| --- | STOP | 65 | STATION2 | 32 | 2 |
| 04 | FAX START | 66 | STATION3 | 33 | 3 |
| 06 | COPY | 67 | STATION4 | 34 | 4 |
| 08 | MONITOR | 68 | STATION5 | 35 | 5 |
| 09 | BROADCAST | 69 | STATION6 | 36 | 6 |
| 0A | MUTE |  |  | 37 | 7 |
| 0C | AUTO ANSWER |  |  | 38 | 8 |
| 0D | SET |  |  | 39 | 9 |
| $1 E$ | [ |  | 3 | 3 ] | 0 |
| $1 F$ | $[4]$ |  |  | $3 B$ | $*$ |
| 20 | MENU |  |  | $3 C$ | $\#$ |
|  |  |  |  | $3 D$ | REDIAL / PAUSE |
| 25 | $[+]$ VOLUME |  |  |  |  |
| 26 | $[-]$ VOLUME |  |  | 47 | CALLER ID |
|  |  |  |  |  |  |

### 10.3. Print Test Pattern

## 1. Platen roller

$\qquad$


## 2. Left margin / Top margin



## 3. Thermal head 1 dot


4. Use this test pattern to confirm the torque limiter for Ink film and platen roller timing.

| $\neq$about <br> 2.5 cm |
| :--- |

$\qquad$

## 11 Service Mode

The programming functions are used to program the various features and functions of the machine, and to test the machine. This facilitates communication between the user and the service man while programming the unit.

### 11.1. Programing and Lists

### 11.1.1. Operation

There are 2 basic categories of programming functions, the User Mode and the Service Mode. The Service Mode is further broken down into the normal and special programs. The normal programs are those listed in the Operating Instructions and are available to the user. The special programs are only those listed here and not displayed to the user. In both the User and Service Modes, there are Set Functions and Test Functions. The Set Functions are used to program various features and functions, and the Test Functions are used to test the various functions. The Set Functions are accessed by entering their code, changing the appropriate value, then pressing the SET key. The Test Functions are accessed by entering their code and pressing the key listed on the menu. While programming, to cancel any entry, press the STOP key.

### 11.1.2. Operation Flow


(Some codes are for the Test Functions, and some are for the special and normal Set Functions.)


- User mode Print out



### 11.1.3. Service Function Table

| Code | Function | Set Value | Effective Range | Default | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 501 | Pause time set | X 100 msec | 001~600 | 030 | ------ |
| 503 | Dial speed select | $\begin{aligned} & \text { 1: } 10 \mathrm{pps} \\ & \text { 2: } 20 \mathrm{pps} \end{aligned}$ | 1, 2 | 1 | ------- |
| 514 | Bell detection time | X 100 msec | 1~9 | 6 | ---------- |
| 520 | CED frequency select | $\begin{aligned} & \text { 1:2100 Hz } \\ & \text { 2:1100 Hz } \end{aligned}$ | 1, 2 | 1 | See Symptom/Countermeasure Table for long distance and international calls in 12.3.2.1.5.The unit can copy, but cannot either transmit/receive long distance or international communications (P.94). |
| 521 | International mode select | 1:ON 2:OFF | 1, 2 | 1 | See Symptom/Countermeasure Table for long distance and international calls in 12.3.2.1.5.The unit can copy, but cannot either transmit/receive long distance or international communications (P.94). |
| 522 | Auto standby select | 1:ON 2:OFF | 1, 2 | 1 | The resolution reverts to the default when transmission is complete. |
| 523 | Receive equalizer select | 1: 0 km 2: 1.8 km 3: 3.6 km 4: 7.2 km | 1~4 | 1 | When the telephone station is far from the unit or reception cannot be performed correctly, adjust accordingly. |
| 524 | Transmission equalizer select | 1: 0 km 2: 1.8 km 3: 3.6 km 4: 7.2 km | 1~4 | 1 | When the telephone station is far from the unit or transmission cannot be performed correctly, adjust accordingly. |
| 544 | Document feed position adjustment value set | 1~9 mm | 1~9 | 5 | When the ADF function is in correct, adjust the feed position. |
| 550 | Memory clear |  |  |  | See 11.1.4.Memory Clear Specification (P.67). |
| 551 | ROM check |  |  |  | See 10Test Mode (P.60). |
| 552 | DTMF single tone test | 1:ON 2:OFF | 1, 2 | 2 | See 10Test Mode (P.60). |
| 553 | Monitor on FAX communication select | $\begin{aligned} & \text { 1:OFF } \\ & \text { 2:PHASE B } \\ & \text { 3:ALL } \end{aligned}$ | 1~3 | 1 | Sets whether to monitor the line signal with the unit's speaker during FAX communication or not. |
| 554 | Modem test |  |  |  | See 10Test Mode (P.60). |
| 555 | Scan check |  |  |  | See 10Test Mode (P.60). |
| 556 | Motor test |  |  | 0 | See 10Test Mode (P.60). |
| 557 | LED test |  |  |  | See 10Test Mode (P.60). |
| 558 | LCD test |  |  |  | See 10Test Mode (P.60). |
| 559 | Document jam detection select | 1:ON 2:OFF | 1, 2 | 1 | Sets whether or not to detect a paper jam. If a document with a length longer than 600 mm is copied or transmitted, the unit stops copying or transmitting as a paper jamming because a document over 600 mm is not normal. In the factory, transmitting or copying a document longer than 600 mm is done as an aging test. In this case, OFF is selected. |
| 561 | KEY test |  |  |  | See 10Test Mode (P.60). |
| 567 | T1 timer | X second | 001~255 | 046 |  |
| 570 | BREAK \% select | 1:61\% 2:67\% | 1, 2 | 1 | Sets the \% break of pulse dialing according PBX. |
| 571 | ITS auto redial time set | X number of times | 00~99 | 05 | Selects the number of times that ITS is redialed (not including the first dial). |
| 572 | ITS auto redial line disconnection time set | X second | 001~999 | 185 | Sets the interval of ITS redialing. |
| 573 | Remote turn-on ring number set | X number of rings | 00~99 | 10 | Sets the number of rings before the unit starts to receive a document in the TEL mode. |
| 590 | FAX auto redial time set | X number of times | 00~99 | 05 | Selects the number of redial times during FAX communication (not including the first dial). |
| 591 | FAX auto redial time disconnection time set | X second | 001~999 | 185 | Sets the FAX redial interval during FAX communication. |
| 592 | CNG transmit select | $\begin{aligned} & \text { 1:OFF } \\ & \text { 2:ALL } \\ & \text { 3:AUTO } \end{aligned}$ | 1~3 | 2 | Lets you select the CNG output during FAX transmission. ALL: CNG is output at phase A. AUTO: CNG id output only when automatic dialing is performed. OFF: CNG id not output at phase A. Refer to 12.3.2.1.2.Sometime there is a transmit problem (P.91). |

KX-FP701CX/KX-FP702CX

| Code | Function | Set Value | Effective Range | Default | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 593 | Time between CED and 300bps | $\begin{aligned} & 1: 75 \mathrm{msec} \\ & 2: 500 \mathrm{msec} \\ & 3: 1 \mathrm{sec} \end{aligned}$ | 1~3 | 1 | See Symptom/Countermeasure Table for long distance and international calls in 12.3.2.1.5.The unit can copy, but cannot either transmit/receive long distance or international communications (P.94). Refer to 12.3.2.1.3.Receive Problem (P.92) . |
| 594 | Overseas DIS detection select | 1:detects at the 1st time 2:detects at the 2st time | 1, 2 | 1 | See Symptom/Countermeasure Table for long distance and international calls in 12.3.2.1.5.The unit can copy, but cannot either transmit/receive long distance or international communications (P.94). Refer to 12.3.2.1.2.Sometime there is a transmit problem (P.91). |
| 595 | Receive error limit value set | $\begin{aligned} & 1: 5 \% \\ & 2: 10 \% \\ & 3: 15 \% \\ & 4: 20 \% \end{aligned}$ | 1~4 | 2 | Refer to 12.3.2.1.3.Receive Problem (P.92). |
| 596 | Transmit level set | X dbm $(10=-10 \mathrm{dbm})$ | -15~00 | 11 | Selects the FAX transmission level. Refer to 12.3.2.1.2.Sometime there is a transmit problem (P.91) and 12.3.2.1.3.Receive Problem (P.92). |
| 598 | Receiving sensitivity | X dbm $(40=-40 \mathrm{dbm})$ | -20~-48 | 42 | Used when there is an error problem. Refer to 12.3.2.1.5.The unit can copy, but cannot either transmit/receive long distance or international communications (P.94). <br> Power is OFF/ON after changing this set value. |
| 599 | ECM frame size | 1:256 2:64 | 1, 2 | 1 | ----------- |
| 710 | Memory clear except History data |  |  |  | Refer to 11.1.4.Memory Clear Specification (P.67). |
| 717 | Transmit speed selection | $1: 9600 B P S$ <br> $2: 7200 B P S$ <br> $3: 4800 B P S$ <br> $4: 2400 B P S$ | 1~4 | 1 | Adjusts the speed to start training during FAX transmission. Refer to 12.3.2.1.2.Sometime there is a transmit problem (P.91) and 12.3.2.1.6.The unit can copy, but the transmission and reception image are incorrect (P.96). |
| 718 | Receive speed selection | $1: 9600 B P S$ $2: 7200 B P S$ $3: 4800 B P S$ $4: 2400 B P S$ | 1~4 | 1 | Adjusts the speed to start training during FAX transmission. Refer to 12.3.2.1.3.Receive Problem (P.91) and 12.3.2.1.6.The unit can copy, but the transmission and reception image are incorrect (P.96). |
| 722 | Redial tone detect | 1:ON 2:OFF | 1, 2 | 1 | Sets the tone detection mode after redialing. |
| 745 | Power ON film feed | 1:ON 2:OFF | 1, 2 | 1 | When the power is turned on, the film is wound to take up any slack. |
| 763 | CNG detect time for friendly reception | $1: 10 \mathrm{sec}$ $2: 20 \mathrm{sec}$ $3: 30 \mathrm{sec}$ | 1~3 | 3 | Selects the CNG detection tone of friendly reception. |
| 773 | DIS-DIC interval | $\begin{aligned} & \text { 1: } 500 \mathrm{msec} \\ & \text { 2: } 200 \mathrm{msec} \end{aligned}$ | 1, 2 | 2 | This is similar to \#594. The time interval from receiving DIS to sending DCS can be changed to wait for the echo canceler to recover. |
| 774 | T4 timer | X 100 msec | 00~99 | 00 | Use this function when delay occurs in the line and communication (ex. Mobile comm) does not work well. |
| 815 | Sensor \& Vox check |  |  |  | See 10Test Mode (P.60). |
| 852 | Print test pattern |  |  |  | See 10Test Mode (P.60). |
| 853 | Top margin |  | 1~9 | 2 | - ---------- |
| 861 | Paper size | $\begin{aligned} & \text { 1:A4 } \\ & \text { 2:LETTER } \end{aligned}$ | 1, 2 | 1 | ---------- |
| 874 | DTMF ON time | X 10 msec | 06~20 | 10 | --- |
| 875 | DTMF OFF time | X 10 msec | 06~20 | 10 | ---------- |
| 880 | History list |  |  |  | See 11.2.3.History (P.71). |
| 881 | Journal 2 list |  |  |  | See 12.3.1.3.Printout Example (P.87). |
| 882 | Journal 3 list |  |  |  | See 12.3.1.3.Printout Example (P.87). |
| 961 | The time transmitting the false ring back tone | X sec | 01~10 | 07 | Set the time transmitting the false ring back tone to the line in TEL/FAX mode. |
| 962 | The operator calling time | X sec | 05~30 | 10 | Set the operator calling time through the speaker in TEL/FAX mode. |

### 11.1.4. Memory Clear Specification

| Item | Status after Memory Clear |  |
| :--- | :---: | :---: |
|  | Service Mode \#550*1 | Service Mode \#710*2 |
| Date and time (user mode \#001) | - | Default |
| Your logo (user mode \#002) | - | Default |
| Your Fax Number (user mode \#003) | - | Default |
| One touch dial and Directory | - | Default |
| History | - | - |
| Top margin (service mode \#853) | - | - |
| Other Setting data <br> (User setting and Service setting data) | Default | Default |

- : Not changed
*1 Execute Service Mode \#550 when you want to reset the all setting data keeping the user information.
*2 Execute Service Mode \#710 to clear the user information in case that Main Unit is recycled.


## Note:

- Please restart a power supply after clearing a memory.


### 11.2. The Example of the Printed List

### 11.2.1. User Mode

### 11.2.1.1. KX-FP701CX

## SETUP IIST

[ BASIC FEATURE LIST ]


## Note:

The above values are the default values.

### 11.2.1.2. KX-FP702CX

## SETUP LIST

[ BASIC FEATURE LIST ]


Set Value
Note:
The above values are the default values

### 11.2.2. Service Mode Settings

### 11.2.2.1. KX-FP701CX

| CE DATA LIST ] Set Value |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Code 503 DIAL SPEED | $=10 \mathrm{pps}$ | [1=10 | $2=201 p$ |  |  |
| 520 CED FREQ. | $=2100 \mathrm{~Hz}$ | [1=2100 | $2=1100$ |  |  |
| 521 Intl. MODE | $=\mathrm{ON}$ | [1=ON | $2=O F F]$ |  |  |
| 522 AUTO STANDBY | O ON | [1 $=\mathrm{ON}$ | $2=O F E]$ |  |  |
| 523 RX EQL. | $=0.0 \mathrm{Km}$ | [1=0.0 | $2=1.8$ | $3=3.6$ | $4=7.2 \mathrm{Jkm}$ |
| 524 TX EQL. | $=0.0 \mathrm{Km}$ | [1=0.0 | $2=1.8$ | $3=3.6$ | $4=7.2 \mathrm{Jkm}$ |
| 853 TOP MARGIN | $=5$ | [1...9] |  |  |  |

[ special service settings ]

| 514 | 544 | 552 | 553 | 559 | 567 | 570 | 571 | 572 | 573 | 590 | 591 | 592 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Code | 6 | 5 | 2 | 1 | 1 | 046 | 1 | 05 | 185 | 10 | 05 | 185 |
| 593 | 594 | 595 | 596 | 598 | 599 | 717 | 718 | 722 | 745 | 763 | 773 | 774 |
| 1 | 1 | 2 | 11 | 42 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 00 |

USAGE TIME $=00000$ HOURS

Version $=$ Gxxxxx xxxx

## Note:

The above values are the default values.

### 11.2.2.2. KX-FP702CX



## Note:

The above values are the default values.

### 11.2.3. History

〔HISTURY 】

$\qquad$ date $\qquad$ UEPLER $\qquad$ FILM $\qquad$
OUGTOMER GMFLAINT


FHONE SURUEY RESULT.

## Note:

See the following descriptions of this report. Item No. (1) ~ (44) are corresponding to the listed items in 11.2.3.1.Descriptions of the History Report (P.72).

### 11.2.3.1. Descriptions of the History Report

(1) SOFTWARE VERSION

FLASH ROM version
(2) SUM

FLASH ROM internal data calculation.
(3) YOUR LOGO

The user logo recorded in the unit. If it is not recorded,
NONE will be displayed.
(4) YOUR TELEPHONE NUMBER

The user telephone number recorded in the unit. If it is not recorded, NONE will be displayed.
(5) FAX PAGER NUMBER

If you program a pager number into the unit, the pager number will be displayed here.
(6) FACTORY - CUSTOMER

This shows how many days from factory production until the user turns ON the unit.
(7) MONTH

The shows the very first month, date, year and time set by the user after they purchased the unit.
(8) DAY

The shows the very first month, date, year and time set by the user after they purchased the unit.
(9) YEAR

The shows the very first month, date, year and time set by the user after they purchased the unit.
(10) TIME

The shows the very first month, date, year and time set by the user after they purchased the unit.
(11) USAGE TIME

The amount of time the unit has been powered ON.
(12) FACTORY - NOW

This shows how many days from factory production until the user prints out this history list.
(13) TEL MODE

The amount of time the TEL mode setting was used.
(14) FAX MODE

The amount of time the FAX mode setting was used.
(15) TEL/FAX MODE

The amount of time the TEL/FAX mode setting was used.
(16) ANS/FAX MODE

The amount of time the ANS/FAX mode setting was used.
(17) FINAL RECEIVE MODE

The last set receiving mode by the user.
(18) TONE/PULSE SELECTION

The most recently used setting used, either TONE or PULSE.

## (19) RECEIVE REDUCTION

The compression rate when receiving.
(20) SETTING NO. OF DIRECTORY

The recorded directory stations.
(21) NUMBER OF COPY

The number of pages copied.
(22) NUMBER OF RECEIVE

The number of pages received.
(23) NUMBER OF SENDING

The number of pages sent.
(24) NUMBER OF CALLER ID

The number of times Caller ID was received.
(25) NUMBER OF RECORDING MESSAGE

The number of messages recorded in TAM.
(26)~(29) Not Used
(30) NUMBER OF PRINTING WARNING LIST

The number of warning lists printed until now.
(31) NUMBER OF PRINTING HELP

The number of help lists printed until now.
(32) NUMBER OF DIVIDED PRINTING IN FAX RECEPTION The number of faxes received that were divided into more than one sheet since the unit was purchased.
(33) Not used
(34) FAX MODE

Means the unit received a fax message in the FAX mode.
(35) MAN RCV

Means the unit received a fax message by manual operation.
(36) FRN RCV

Means the unit received a fax message by friendly signal detection.
(37) VOX

Means the unit detected silence or no voice.
(38) RMT DTMF

Means the unit detected DTMF (Remote Fax activation code) entered remotely.
(39) PAL DTMF

Means the unit detected DTMF (Remote Fax activation code) entered by a parallel connected telephone.
(40) TURN-ON

Means the unit started to receive after 10 rings. (Remote
Turn On: Service Code \#573)
(41) TIME OUT

Means the unit started to receive after Ring Time Out in
the EXT-TAM or TEL/FAX mode.
(42) IDENT

Means the unit detected Ring Detection.
(43) CNG OGM

Means the unit detected the CNG while it was sending the Dummy Ring Back Tone in the TEL/FAX mode, or while answering a call in the EXT-TAM mode. Or means the unit detected the CNG while it was sending the OGM in the ANS/FAX mode.
(44) CNG ICM

Means the unit detected the CNG while it was recording the ICM in the ANS/FAX mode.

## 12 Troubleshooting Guide

### 12.1. Troubleshooting Summary

After confirming the problem by asking the user, troubleshoot according to the instructions and observe the following precautions.

### 12.1.1. Precautions

1. If there is a problem with the print quality or the paper feed, first check if the installation space and the print paper meets the specifications, the paper selection lever/paper thickness lever is set correctly, and the paper is set correctly without any slack.
2. Before troubleshooting, first check that the connectors and cables are connected correctly (not loose). If the problem occurs randomly, check it very carefully.
3. When connecting the AC power cord with the unit and checking the operation, exercise utmost care when handling electric parts in order to avoid electric shocks and short-circuits.
4. After troubleshooting, double check that you have not forgotten any connectors, left any loose screws, etc.
5. Always test to verify that the unit is working normally.

### 12.2. Error Messages-Display

If the unit detects a problem, one or more of the following messages will appear on the display.
The explanations given in the [ ] are for servicemen only.


#### Abstract

"BACK COVER OPEN" - The back cover is open. Close the back cover firmly.

\section*{"CALL SERVICE"} - [This error is displayed when the thermal head does not warm up. Check the thermistor on the thermal head and connector lead.]


## "CHECK DOCUMENT"

- The document was not fed into the unit properly. Re-insert the document. If misfeeding occurs frequently, clean the document feeder rollers and try again.
(Refer to 15.4.1.Document feeder/recording paper feeder/scanner glass cleaning (P.160).)
- The document is longer than 600 mm . Press [STOP] to remove the document. Divide the document into two or more sheets, and try again.
[Alternately, turn off service code \#559 to enable sending of documents longer than 600 mm .]
(Refer to 11.1.3.Service Function Table (P.65).)


## "CHECK PAPER"

- The recording paper is not installed or the unit has run out of paper. Install paper and press [SET] to clear the message.
- The recording paper was not fed into the unit properly. (Refer to 15.3.1.2.When the recording paper was not fed into the unit properly (P.159).) Re-install paper and press [SET] to clear the message.
(Refer to 8.6.Installing the Recording Paper (P.57).)
- The recording paper has jammed near the recording paper entrance. Remove the jammed paper and press [SET] to clear the message.
(Refer to 15.3.1.Recording Paper Jams (P.158).)


## "FAX IN MEMORY"

- See the other displayed message instructions to print out the document.
Received documents are stored in memory due to a lack of recording paper, a lack of ink film or a recording paper jam. Install paper, install ink film or remove the jammed paper. You will lose all faxes in memory if the power is removed. Check with power connected.
(Refer to 8.6.Installing the Recording Paper (P.57) and 8.3.Installing the Ink Film (P.55) and 15.3.1.Recording Paper Jams (P.158).)


## "FAX MEMORY FULL"

- The memory is full of received documents due to a lack of recording paper, a lack of ink film or a recording paper jam. Install paper, install ink film or remove the jammed paper. You will lose all faxes in memory if the power is removed. Check with power connected. (Refer to 8.6.Installing the Recording Paper (P.57) and 8.3.Installing the Ink Film (P.55) and 15.3.1.Recording Paper Jams (P.158).)
- When performing memory transmission, the document being stored exceeded the memory capacity of the unit. Send the entire document manually.


## "FILM EMPTY"

- The ink film is empty. Replace the ink film with a new one.
- The ink film is slack. Tighten it (See step 5 on 8.3.Installing the Ink Film (P.55).) and install again.
- The fax machine is positioned near appliances such as TVs or speakers which generate an intense magnetic field.


## "FILM NEAR EMPTY"

- The remaining ink film is low. Prepare a new ink film. (Refer to 4.1.Optional Accessories (P.9).)


## "MEMORY FULL"

- When making a copy, the document being stored exceeded the memory capacity of the unit. Press [STOP] to clear the message. Divide the document into sections.
"MODEM ERROR"
- There is something wrong with the unit's modem. (Refer to 10Test Mode (P.60) and 12.5.5.Digital Board Section (P.117).)


## "NO FAX REPLY"

- The other party's fax machine is busy or has run out of recording paper. Try again.

```
"OPEN CABINET
CHECK FILM SLACK"
"OPEN CABINET
CHECK FILM TYPE"
```

- Please use genuine Panasonic replacement film.
(Refer to 4.1.Optional Accessories (P.9).)
- The ink film is slack. Tighten it (See step 5 on 8.3.Installing the Ink Film (P.55)).
- The fax machine is positioned near appliances such as TVs or speakers which generate an intense magnetic field.


## "PAPER JAMMED"

- A recording paper jam occurred. Remove the jammed paper. (Refer to 15.3.1.Recording Paper Jams (P.158).)
- You forced the recording paper into the paper tray too strongly. Remove all of the installed paper, and re-install it gently.


## "PHONEBOOK FULL"

- There is no space to store new items in the phonebook. Erase unnecessary items.


## "PLEASE WAIT"

- The unit is checking that there is no slack or crease in the ink film. Wait for a moment while the check is completed.
"POLLING ERROR"
- The other party's fax machine does not offer the polling function. Check with the other party.
"REDIAL TIME OUT"
- The other party's fax machine is busy or has run out of recording paper. Try again.
"REMOVE DOCUMENT"
- The document is jammed. Remove the jammed document. (Refer to 15.3.2.Document Jams - sending (P.160).)
- Press [STOP] to eject the jammed paper.


## "TRANSMIT ERROR"

- A transmission error occurred. Try again.
- If you send a fax overseas, try the following:
-Use the overseas transmission mode (feature \#23 on 12.4.2.Program Mode Table (P.99)).
-Add 2 pauses at the end of the telephone number or dial manually.


## "UNIT OVERHEATED"

- The unit is too hot. Stop using the unit for a while and let the unit cool down.


### 12.3. Error Messages-Report

## Journal Report

If a problem occurs during fax transmission or reception, one of the following messages will be printed on the sending and journal reports.

How to output the Journal Report

1. Press [MENU] repeatedly until " PRINT REPORT" is displayed.
2. Press [ 4 ] or [
3. Press [SET].
4. The report is printed out.


## Error code table:

| (1) CODE | (2) RESULT | (3) MODE | SYMPTOM | Countermeasure* |
| :---: | :---: | :---: | :---: | :---: |
|  | PRESSED THE STOP KEY | SND \& RCV | Communication was interrupted by the STOP button. |  |
|  | DOCUMENT JAMMED | SND | The document paper is jammed. |  |
|  | NO DOCUMENT | SND | No document paper. |  |
|  | OTHER FAX NOT RESPONDING | SND | Transmission is finished when the T1 TIMER expires. | 1 |
| 28 | COMMUNICATION ERROR | SND \& RCV |  |  |
| 41 | COMMUNICATION ERROR | SND | DCN is received after DCS transmission. | 2 |
| 42 | COMMUNICATION ERROR | SND | FTT is received after transmission of a 2400BPS training signal. | 3 |
| 43 | COMMUNICATION ERROR | SND | No response after post message is transmitted three times. | 4 |
| 44 | COMMUNICATION ERROR | SND | RTN and PIN are received. | 5 |
| 46 | COMMUNICATION ERROR | RCV | No response after FTT is transmitted. | 6 |
| 48 | COMMUNICATION ERROR | RCV | No post message. | 7 |
| 49 | COMMUNICATION ERROR | RCV | RTN is transmitted. | 8 |
| 50 | COMMUNICATION ERROR | RCV | PIN is transmitted (to PRI-Q). | 8 |
| 51 | COMMUNICATION ERROR | RCV | PIN is transmitted. | 8 |
| 52 | OTHER FAX NOT RESPONDING | RCV | Reception is finished when the T1 TIMER expires. | 9 |
| 54 | ERROR-NOT YOUR UNIT | RCV | DCN is received after DIS transmission. | 11 |
| 58 | COMMUNICATION ERROR | RCV | DCN is received after FTT transmission. | 13 |
| 59 | ERROR-NOT YOUR UNIT | SND | DCN responds to the post message. | 14 |
| 65 | COMMUNICATION ERROR | SND | DCN is received before DIS reception. | 2 |
| 65 | COMMUNICATION ERROR | RCV | Reception is not EOP, EOM PIP, PIN, RTP or RTN. | 2 |
| 68 | COMMUNICATION ERROR | RCV | No response at the other party after MCF or CFR is transmitted. | 13 |
| 70 | ERROR-NOT YOUR UNIT | RCV | DCN is received after CFR transmission. | 13 |
| 72 | COMMUNICATION ERROR | RCV | Carrier is cut when the image signal is received. | 16 |
| 75 | MEMORY FULL | RCV | The document was not received due to memory full. |  |
| 74 | JUNK FAX PROH. REJECT | RCV | The fax was rejected by the junk fax prohibitor feature. |  |
|  |  |  |  |  |
| FF | COMMUNICATION ERROR | SND \& RCV | Modem error. For the DCN, DCN, etc. abbreviations, refer to 6.6.Modem Section (P.35). | 12 |

SND=TRANSMISSION RCV=RECEPTION
Most fax communication problems can be resolved by the following steps.

1. Change the transmit level. (Service code: 596, refer to 11.1.3.Service Function Table (P.65).)
2. Change the TX speed/RX speed. (Service code: 717/718, refer to 11.1.3.Service Function Table (P.65).)

## Note*:

If the problem remains, see the following "Countermeasure" flow chart.

## Countermeasure




## REFERENCE:

10Test Mode (P.60)


No response after the post message is transmitted three times.

Inquire with the receiver if the caller's document was sent correctly


Ask the service section for the receiver's FAX machine to confirm the machine's condition.


RTN and PIN are received.


No response after FTT is transmitted.

Perform the communication test using the LOOP simulator and check the machine's reception condition.


Perform voice communication with the NG caller

Check if the line was not interrupted by noises or cross talk. If not, wait until the line is able to perform correct communication.

## REFERENCE

10Test Mode (P.60)


## REFERENCE

10Test Mode (P.60)


## REFERENCE

10Test Mode (P.60)

Confirm if a mechanical problem occurred. E.g., transmission was interrupted, the document was out of place, or on the receiving side (being polled).




## REFERENCE:

10Test Mode (P.60)

### 12.3.1. Special Service Journal Report

Journal 2 and Journal 3 shown below, which are special journals giving the additional detailed information about the latest 35 communications, can be printed by Service Code 881 or 882 . Remote printing function for the journal reports (JOURNAL, JOURNAL 2 and JOURNAL 3) is also available for service technicians. (Refer to 12.4.Remote Programming (P.98).) The JOURNAL report only gives you basic information about a communication, but the other two journal reports provide different information on the same item (communication).


## HOW TO READ JOURNAL REPORTS:

## Example:

1. Look at NO. 01 in the JOURNAL. If you want to know about the details about that item, see NO. $\mathbf{0 1}$ in the JOURNAL 2 and the JOURNAL 3. You can get the following information.

* MODE: Fax transmission
* RCV. MODE: TEL
* TX SPEED: 9.6 kbps
* RESOLUTION: standard
* ENCODE: MH
* MAKER CODE: 79

2. Look at NO. 04 in the JOURNAL 2. CNG (0003) indicates that the CNG signal has been received three times since the purchase date.
For further details, see 12.3.1.1.Journal 2 (P.86) and 12.3.1.2.Journal 3 (P.87).

### 12.3.1.1. Journal 2

Refer to JOURNAL 2 in 12.3.1.3.Printout Example (P.87).
Journal 2 displays the additional detailed information about the last 35 communications.

## Descriptions:

## (1) RCV. MODE

Indicates which receive mode the unit was in when the unit received a fax message.
This information is also displayed when the unit transmitted a fax message.

## (2) SPEED

Indicates the speed of the communication. If multiple pages are transmitted or received, it indicates the last page's communication speed. If there is a communication error, "?" is displayed.

## (3) RESOLUTION

Indicates the resolution of the communication. If multiple pages are transmitted or received, it indicates the last page's resolution. If there is a communication error, "?" is displayed.
(4) RCV-TRIG. (CNT.)

Indicates the trigger that causes the unit to switch to the fax receive mode. The available options are listed in JOURNAL 2 in 12.3.1.3.Printout Example (P.87). The values in parentheses indicate how many times the trigger has been used. (For example, "0003" means three times.)

| No. | Display |  |
| :---: | :--- | :--- |
| 1 | FAX MODE | Function |
| 2 | MAN RCV | Means the unit received a fax message in the FAX mode. |
| 3 | FRN RCV | Means the unit received a fax message by friendly signal detection. |
| 4 | VOX | Means the unit detected silence or no voice. |
| 5 | RMT DTMF | Means the unit detected DTMF (Remote Fax activation code) entered remotely. |
| 6 | PAL DTMF | Means the unit detected DTMF (Remote Fax activation code) entered by a parallel connected tele- <br> phone. |
| 7 | TURN-ON | Means the unit started to receive after 10 rings. (Remote Turn On: Service Code \#573) |
| 8 | TIME OUT | Means the unit started to receive after Ring Time Out in the EXT-TAM or TEL/FAX mode. |
| 9 | IDENT | Means the unit detected Ring Detection. |
| 10 | CNG OGM | Means the unit detected the CNG while it was sending the Dummy Ring Back Tone in the TEL/FAX <br> mode. <br> OR <br> Means the unit detected the CNG while it was sending the OGM in the ANS/FAX mode. |
| 11 | CNG ICM | Means the unit detected the CNG while it was recording the ICM in the ANS/FAX mode. |

(5) ERROR $\rightarrow$ MEMORY

Indicates the reason why the unit received a fax message in memory.
If you look at No. 11 in the JOURNAL 2 in 12.3.1.3.Printout Example (P.87), it shows the fax message was received in memory due to "PAPER OUT" error.

## NO RESPONSE DISAPPEARED ON JOURNAL

The "NO RESPONSE DISAPPEARED ON JOURNAL" displays the information about the last 10 communications terminated by "No Response". (Some of the communications terminated by "No Response" were not displayed in the JOURNAL.)
When a fax transmission cannot be performed because the other party's unit is set to the TEL mode, "No response" will be printed.

### 12.3.1.2. Journal 3

Refer to JOURNAL 3 in 12.3.1.3.Printout Example (P.87).

## Descriptions:

(6) ENCODE

Compression Code: MH/MR/MMR

## (7) MSLT

MSLT means Minimum Scan Line Time. Used only at the factory.
(8) EQM

EQM means Eye Quality Monitor. Used only at the factory.

## (9) ERROR LINE(RX)

When an error occurs while receiving a fax, this shows the number of error lines.

## (10) MAKER CODE

This shows a 2 digit code of the other party's fax machine brand.

OE: "KX" model
00: Unknown
79: "UF" model
19: "Xerox" model

### 12.3.1.3. Printout Example

## JOURNAL2

| NO. | RCU, MDDE | SPEED (CNT.) | RESOLITIDN | RCU-TRIG. SCNT. 3 | ERRDR->MEMORY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | FAX ONLY | 96018P5 | FINE. | FAX MOD |  |
| 02 | FAX OHLY | 9606BFS | STD. | FAX MOD |  |
| 03 | FAX ONLY | 5600BPS | FINE. |  |  |
| 04 | FAX Orlly | 9600EFS | FINE. | FAX MOD |  |
| 05 | FAX OHLY | 96008P5 | FINE. | FAX MOD |  |
| 05 | FAX OrNLY | 96018P5 | FINE, | FAX MOD |  |
| 07 | FAX OHLY | 9600BPS | FINE. |  |  |
| 09 | FAX ONLY | 9600BFS | FINE. |  |  |
| 09 | FAX OML'r | 9600EPS | FINE. |  |  |
| 10 | FAX OHLY | $96008 P 5$ | STD. | FAX MOD |  |
| 11 | FAX ONLY | 9600BPS | FINE. | FAX MOD | FAPER DUTT |
| 12 | FAX GNLY | 96008FS | STD. | FAX MOD | COVER OFEN |
| 13 | FAX ONLY | 9600BPS | STD. |  |  |
| 14 | FAX ONLY | ? | ? |  |  |
| 15 | FAX Orlly | ? | ? |  |  |
| 16 | FAX ONLY | ? | ? |  |  |
| 17 | FAX ONLY | 9600BPS | STD. |  |  |
| 18 | FAX ONLY | $96008 F 5$ | FINE. | FAX MOD |  |
| 19 | FAX ONLY | 9600BFS | STD. | FAX MOD |  |
| 20 | FAX ONLY | 9600BPS | S-FINE. |  |  |
| 21 | FAX ONLY | $96008 P 5$ | FINE. |  |  |
| 22 | FAX OMLY | 9600BFS | FINE. | FAX MOD |  |
| 23 | FAX ONLY | $?$ | ? | FAX MOD |  |
| 24 | FAX ${ }^{\text {anly }}$ | 9620BPS | STD. | FAX MOD |  |
| 25 | FAX ONLY | 96008PS | STD. | FAX MOD |  |
| 26 | FAX ONLY | 9600bPS | FINE. | FAX MED |  |
| 27 | FAX OMLY | 9600BPS | FIME. |  |  |
| 28 | FAX ONLY | 9600BP5 | STD. | FAX MOD |  |
| 29 | FAX ONLY | $96008 P 5$ | FITVE. | FAX MOD |  |
| 30 | FAX GNLY | 9600BPS | S-FINE. | FAX MOD |  |
| 31 | FAX GNLY | 960EBPS | STD. | FAX MOD |  |
| 32 | FAX ONLY | 9600BPS | STD. | FAX MOD |  |
| 33 | FAX ONLY | ? | ? | FAX MIDD |  |
| 34 | FAX ${ }^{\text {ONLY }}$ | 9600BPS | STD. | FAX MOD |  |
| 35 | FAX ONLCY | 9600BFS | STD. | FAX MOD |  |

## NO RESPONSE DISAPPEARED ON JOURNAL

```
YOJF LNGOI :
Y'WLNR FA'X NL. :
```

JOURNAL3
1 Jan． 2007 1：58PM

| ND. | ENCODE | MSLT | EQM（RX） | ERROR LINE（RX） | MAKER CODE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q1 | MR | 10 msec | 007A | 00000 | DE |
| 02 | MR | 20msec | 016B | 00000 | 00 |
| 03 | MH | 10msec | 0000 | 00000 | （00） |
| 04 | MR | 20 msec | 0198 | 00003 | 00 |
| 015 | MR | 20msec | 0.56 | 00011 | ［10 |
| 016 | MR | 20mSec | 0113 | 20000 | 00 |
| 07 | MR | 5 msec | 0600 | 00000 | 79 |
| ロ8 | MR | 5 msec | 0000 | 00000 | 79 |
| 09 | MR | Omsec | 0900 | 00000 | 19 |
| 12 | MR | 20 msec | 0100 | 00000 | 00 |
| 11 | MR | 10 msec | 0073 | 00000 | DE |
| 12 | MR | 20 msec | 012 B | ¢0 0 0］ | 010 |
| 13 | MH | 20 msec | 0000 | ロ0以00 | 79 |
| 14 | MH | 20misec | 0000 | 00000 | 00 |
| 15 | MH | 29msec | 0000 | 00000 | $6 \square$ |
| 16 | MH | 20msec | 000］ | 00000 | 0 00 |
| 17 | MR | 5 msec | 0000 | 010000 | 79 |
| 18 | MR | 10msec | 8DAB | 00004 | DE |
| 19 | MR | 20msec | 0124 | 06000 | 0］ |
| 20 | MR | 20msec | 0000 | प00］0 | 00 |
| 21 | MR | 20 msec | 0000 | 910000 | 00 |
| 22 | MR | 20 msec | 0135 | 610000 | 00 |
| 23 | MR | 20 msec | 0000 | 010000 | 06 |
| 24 | MR | 20msec | Q1BC | 010000 | $0 \cdot 0$ |
| 25 | MR | 20 msec | Q1AC | 00000 | 00 |
| 26 | MR | 20msec | 日20F | 90000 | 00 |
| 27 | MR | 10 mSec | 01060 | 60060 | GE |
| 28 | MR | 20msec | O1DF | ［10000 | 00 |
| 29 | MR | 20 msec | O1F9 | Vaper | 00 |
| 30 | MR | 20 msec | G0CD | 20000 | 00 |
| 31 | MR | 20mSec | 62F8 | 00000 | TE |
| 32 | MR | 10 msec | 04F8 | 00000 | DE |
| 33 | MR | 10 msec | 0080 | 00000 | 00 |
| 34 | MR | 20msec | 93E6 | 000000 | DE |
| 35 | MH | 20msee | D0ED | 02000 | 00 |

### 12.3.2. Communication Section

Find the problem in the table shown below, and refer to the corresponding troubleshooting procedure in 12.3.2.1.Defective Facsimile Section (P.90),

| No. | Symptom | Reference Content | Possible cause |
| :---: | :---: | :---: | :---: |
| 1 | The paper is not fed properly when faxing. (Not in the copy mode.) | 12.3.2.1.1.Transmit Problem (P.90) | Problem with the feeding mechanism. <br> Refer to 12.5.4.ADF (Auto Document Feed) Section (P.104). |
| 2 | The fax usually transmits successfully but sometimes fails. (The unit can copy documents.) | 12.3.2.1.2.Sometime there is a transmit problem (P.91) | Problem with the service line or with the receiver's fax. |
| 3 | The fax usually receives successfully but sometimes fails. (The unit can copy documents.) | 12.3.2.1.3.Receive Problem (P.92) | Problem with the service line or with the transmitter's fax. |
| 4 | The fax completely fails to transmit or receive. (The unit can copy documents.) | 12.3.2.1.4.The unit can copy, but cannot transmit / receive (P.93) | Problem with the electric circuit. |
| 5 | The fax fails either to transmit or receive when making a long distance or an international call. <br> (The unit can copy documents.) | 12.3.2.1.5.The unit can copy, but cannot either transmit/receive long distance or international communications (P.94) | Problem with the service line. |
| 6 | The fax image is poor when transmitting or receiving during a long distance or an international call. | 12.3.2.1.6.The unit can copy, but the transmission and reception image are incorrect (P.96) |  |
| 7 | No.1~No. 5 | - The troubleshooting procedure for each error code will be printed on the communication result report. <br> - 12.3.Error Messages-Report (P.76) |  |

### 12.3.2.1. Defective Facsimile Section

### 12.3.2.1.1. Transmit Problem



## REFERENCE:

(*1): 12.5.8.Operation Panel Section (P.128)
(*2): 12.5.4.ADF (Auto Document Feed) Section (P.104)
(*3): 15Maintenance (P.151)
(*4): 14.2.13.HOW TO REMOVE THE MOTOR BLOCK AND SEPARATION ROLLER (P.148)
(*5): 14.2.3.HOW TO REMOVE THE OPERATION BOARD AND LCD (P.138)

### 12.3.2.1.2. Sometime there is a transmit problem



Note:
"596: Transmit level set" represents a service code. (Refer to 11.1.3.Service Function Table(P.65).)

### 12.3.2.1.3. Receive Problem

First confirm whether the recording paper is installed properly or not before starting troubleshooting. (Refer to "Remarks".)


## Note:

- "596: Transmit level set" represents a service code. (Refer to 11.1.3.Service Function Table (P.65).)
- \#06 : Refer to for 12.4.2.Program Mode Table (P.99) Fax ring count.


## Remarks:

Regarding the reception problem, we have investigated the conceivable causes in the flow chart except for the software-related errors. However, some troubles may occur due to the software-related problems such as "OUT OF PAPER" when the fax switches to the memory receiving mode and the memory capacity becomes full of the unprintable data. In this case, error messages [MEMORY FULL] and its main cause, for example "CHECK PAPER" are displayed on the LCD. Once you solve the main problem, [MEMORY FULL] will be cancelled and the reception problem will be resolved.
LCD display messages indicating the error causes are shown below.
CHECK PAPER
COVER OPEN
UNIT OVERHEATED (COVER OPEN, etc.)...Reset the unit.

## PAPER JAMMED

## CHECK FILM

Please refer to 12.2.Error Messages-Display (P.74) for the above items. If it turns out to be a hardware deformity, please check each sensor. (Refer to 10Test Mode (P.60).)

### 12.3.2.1.4. The unit can copy, but cannot transmit / receive



## REFERENCE:

(*1): 10Test Mode (P.60)
(*2): 12.5.6.Analog Board Section (P.124)

### 12.3.2.1.5. The unit can copy, but cannot either transmit/receive long distance or international communications

The following two causes can be considered for this symptom.

## Cause 1:

The other party is executing automatic dialing, the call has been received by this unit, and the CED or DIS signal response time is too long. (In most cases, this unit detects the CNG signal and can respond to CED or DIS.) (According to the ITU-T standard, the communication procedure is cancelled when there is no response from the other party within 35 sec , so that the other party releases the line.)
(Response Time)


Other party's FAX
machine dials

## (Cause and Countermeasure)

As shown in the chart above, the total handshaking time must be reduced, but because of the long distance connection and linking of several stations, the line connection time cannot be reduced. Accordingly, the following countermeasures should be tried. (A)... As the 35 sec . count is started directly after dialing or directly after the START button has been pressed for models with a START button, the other party should be called manually, if possible. Another possibility is entering two pauses at the end of the auto dial number on the transmission side. Then the count start time can be delayed for 2 pauses (about 10 sec.).

## Cause 2:

Erroneous detection because of an echo or an echo canceler.


## (Echo/Echo Canceler)

The signal from FAX1 reaches FAX2 via stations 1 and 2, but the reflection signal at station 2 also returns via station 1 (echo). As the distance between station 1 and station 2 is far, the echo returns to FAX 1 at a max of 600 msec after transmission. There is a possibility that this signal is detected erroneously as the signal from FAX2. For a normal call, there is also a possibility that the echo of their own voice will make the call difficult to understand. For this reason, each station (station 1 and station 2) attaches echo cancelers (S1 and S2) for international lines or long distance lines. For the echo canceler, the level of the transmission signal from FAX 1 is compared with the level of the reception signal from FAX2. When the transmission signal is larger, S 1 is closed while S2 is opened when it is smaller. In other words, for transmission from FAX1, S1 is closed and S2 is open, so that the echo does not return to FAX1.

## (Causes and Countermeasures)

| No. | Countermeasure Side | Echo Communication Problem Example | Countermeasure | Service Code |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Sending side | Some time is needed to compare the level of the receiving and sending signals for the echo canceler. The header of the training signal lacks due to a switching delay to close S1. | Add a dummy signal to the beginning of the training signal. | Service code (521) (International mode select) This countermeasure becomes the default value. |
| 2 | Receiving side | The echo canceler function stops according to a CED signal frequency of 2100 Hz (S1 and S2 are both ON), a DIS signal is returned as an echo, and a DCS signal from the sending side overlaps the DIS echo. Then the receiving side FAX cannot retrieve the DCS signal. <br> (Refer to Fig. a) | Change to a 1100 Hz CED signal frequency. (Refer to Fig. b) | Service code (520) (CED frequency select) |
|  | Receiving side |  | Change the regular rime of 75 msec between the CED signal and DIS signal to 500 msec . This will give at least 250 msec to recover the echo canceler operation. (Refer to Fig. c) | Service code (593) (Time between CED and 300 bps) |
|  | Sending side |  | The sending side FAX sends a DCS signal not after receiving the 1st DIS signal but after receiving the 2nd DIS signal. (Refer to Fig. d) | Service code (594) (Overseas DIS detection select) |
| 3 | Sending side | Communication failure occurs in a long distance communication on the telephone line without an echo canceler. <br> or | Decrease the transmission level from 10 dBm to -15 dBm and the echo level will decrease. | Service code (596) (Transmit level set) |
| 4 | Sending side Receiving side |  | Decrease the receiving sensitivity from -13 dBm to about -32 dBm so an echo signal will not received. | Service code (598) (Receiving sensitivity) |
| 5 | Sending side Receiving side | There are some cases (e.g. Mobil comms.) which cause the collision of TX / RX signals due to the delay / echo and noise of the network / terminal. (Refer to Fig. e) | Set additional Pause time (Service mode: code No. 774) in between the original and its repeated signals, to prevent the collision of the signals at both end. | Service code (774) (T4 timer) |



Fig. a
(Overlapping the Echo of the DIS signal and DCS signal)


Fig. b
(Countermeasure by Changing the CED Frequency)


Fig. c
(Countermeasure by Changing the Interval Between CED and DIS)


Fig. d
(Countermeasure by Ignoring the 1st DIS)

| <TX side signal> | <RX side signal> | <Countermeasure> |
| :--- | :--- | :--- |
| 2nd / 3rd DCS / Training | \& delayed CFR / FTT | at TX side |
| 2nd / 3rd EOP / EOM / MPS | \& delayed MCF / PIP / PIN / RTP / RTN | at TX side |
| delayed DCS | \& 2nd / 3rd / --- DIS | at RX side |


(Fig. e)

### 12.3.2.1.6. The unit can copy, but the transmission and reception image are incorrect

(Long distance or international communication operation)

This symptom highly depends on the transmission and reception capability of the other FAX unit and the line conditions.
The countermeasures for this unit are shown below.

## Transmission Operation:

Set the transmitting speed to 4800BPS (service mode: code No. 717) or select the overseas mode.

## Reception Operation

If $80 \%$ or more of the reception is incorrect, set the receiving speed to 4800BPS. (Service mode: code No. 718)

- Refer to 11.1.3.Service Function Table (P.65).


### 12.3.2.1.7. How to record fax signal by using PC

Recording FAX signal is one of the useful analysis measures to solve communication problems
The way of recording easily by using PC is shown as follows.

## 1. Equipment

- 1 jig
- 1 PC (with LINE IN)
- 1 audio cord (mini jack supported)
- 2 tel cords

| Parts No. | Parts Name \& Descrip- <br> tion | Qt'y | | |
|---|---|---|---|---|
| PQJJ1T004Z | JACK1, JACK2 | 2 |
| PQJJ1D010Z | PIN JACK | 1 |
| ECQE2155KF | CAPACITOR | 2 |
| ECQE2E155KC |  |  |$\quad$|  |
| :--- |
| MA4020 |

## 2. Setting up



FAX SIGNAL RECORDING JIG
3. Connecting PC and JIG


## 4. PC setting and recording

1. Set LINE IN to be valid in the volume control setting

Refer to the PC instruction book.
2. Start up the PC software "SOUND RECORDER". (This software is bundled to Windows OS, which can create WAV file.)

Set the audio format "PCM 22.050 kHz , 8bit, mono".
3. Click the record button and start recording after acquisition the signal.

## Note:

- Not to be wind wave patterns on the wave monitor.
- Please compress the recording data when you send attaching to E-Mail because the data size will be so heavy.
- Any software which can create WAV files is available.


### 12.4. Remote Programming

If, after the call is connected, the customer describes the situation and it is determined that the problem can be corrected by making parameter changes, this function makes it possible to change parameters such as the user code and service code from another fax (using DTMF tones). Therefore, travel to the customer's location is not required. However, it is not possible to change all the parameters remotely (12.4.2.Program Mode Table (P.99)). The function used to accomplish this is remote programming.

First, in order to check the current status of the service code parameter, print out the setup list (code: 991) and the service list (code: 999) from the customer's fax machine.
Based on this, the parameters for the desired codes can be changed.
The procedure for changing and listing parameters is described on 12.4.1.Entering the Remote Programming Mode and
Changing Service Codes (P.98). Also, before exiting the remote programming mode, it is advisable to obtain a new list to confirm that the changes were made correctly.

## Hints:

Since the connected telephone is in use during the remote programming mode, it may be helpful to ask the customer to switch to the speakerphone. This frees the customer from the need to remain right next to the fax while you are making parameter settings. When finished, inform the customer. Also note that in very noisy locations where the DTMF tones are not audible, the remote programming function will not work.

### 12.4.1. Entering the Remote Programming Mode and Changing Service Codes



[^1]Obtain a list (991: Set up list, 999: Service list) to confirm that the changes were made correctly.

To quit the remote programming mode, ask the customer (the call should still be connected) to press the [STOP] key to return the machine to the normal mode. Then hang up the phone.

## Note:

(*1): Refer to 12.4.2.Program Mode Table (P.99)
12.4.2. Program Mode Table

| Code | Function | Set Value | Default | Remote Setting |
| :---: | :---: | :---: | :---: | :---: |
| 001 | Set date and time | dd/mm/yy hh:mm | 01/01/2007 | NG |
| 002 | Your logo | --------- | None | NG |
| 003 | Your FAX number | --------- | None | NG |
| 004 | Print confirmation report | 1:ERROR / 2:ON / 3:OFF | ERROR | OK |
| 006 | Fax ring count | 1~9 | 2 | OK |
| 013 | Dialing mode | 1:PULSE / 2:TONE | TONE | OK |
| 016 | Paper Size (KX-FP701CX ONLY) | 1:A4 / 2:LETTER | LETTER | OK |
| 017 | Ringer tone | TONE 1 / TONE 2 / TONE 3 | TONE 1 | NG |
| 022 | Journal auto print | 1:ON / 2:OFF | ON | OK |
| 023 | Overseas mode | 1:NEXT FAX / 2:ERROR / 3:OFF | ERROR | OK |
| 025 | Delayed transmission | ON / OFF | OFF | NG |
| 026 | Auto caller's list | 1:ON / 2:OFF | OFF | OK |
| 034 | Quick scan | 1:ON / 2:OFF | OFF | OK |
| 036 | RCV reduction | 1:92\% / 2:86\% / 3:72\% / 4:100\% | 92\% | OK |
| 039 | LCD contrast | NORMAL / DARKER | NORMAL | NG |
| 041 | FAX activation code | ON / OFF | ON ID=**9 | NG |
| 044 | Memory receive alert | 1:ON / 2:OFF | ON | OK |
| 046 | Friendly reception | 1:ON / 2:OFF | ON | OK |
| 049 | Auto disconnect | ON / OFF | ON CODE $=* 0$ | OK |
| 058 | Scan contrast | 1:Normal / 2:Darker / 3:Light | Normal | OK |
| 068 | ECM Selection | 1:ON / 2:OFF | ON | OK |
| 072 | Set flash mode | $\begin{aligned} & \hline \text { 1:90 / 2:100 / 3:110 / 4:160 / 5:200 / 6:250 / } \\ & \text { 7:300 / 8:400 / 9:600 / 0:80 / \#:900 / } \\ & \text { *:700 } \end{aligned}$ | 600 ms | OK |
| 073 | Manual answer mode | 1:TEL / 2:TEL/FAX | TEL | OK |
| 076 | Connecting tone | 1:ON / 2:OFF | ON | OK |
| 078 | TEL/FAX delayed ring | 1~9 | 2 | OK |
| 080 | Set default | YES / NO | NO | NG |
| 501 | Pause time set | 001~600 x 100msec | $030 \times 100 \mathrm{msec}$ | OK |
| 503 | Dial speed | 1:10pps / 2:20 pps | 10pps | OK |
| 514 | Bell detection time | $1 \sim 9 \times 100 \mathrm{msec}$ | $6 \times 100 \mathrm{msec}$ | OK |
| 520 | CED frequency select | $1: 2100 \mathrm{~Hz} / 2: 1100 \mathrm{~Hz}$ | 2100 Hz | OK |
| 521 | International mode select | 1:ON / 2:OFF | ON | OK |
| 522 | Auto standby select | 1:ON / 2:OFF | ON | OK |
| 523 | Receive equalizer select | 1:0km / 2:1.8km / 3:3.6km / 4:7.2km | 0km | OK |
| 524 | Transmission equalizer select | 1:0km / 2:1.8km / 3:3.6km / 4:7.2km | 0km | OK |
| 544 | Document feed position adjustment value set | 1~9 | 5 | OK |
| 550 | Memory clear | --------- | ------ | NG |
| 551 | ROM check | --------- | ----- | NG |
| 552 | DTMF signal tone test | 1:ON / 2:OFF | OFF | OK |
| 553 | Monitor on FAX communication | 1:OFF / 2:Phase B / 3:ALL | OFF | OK |
| 554 | Modem test | --------- | --------- | NG |
| 555 | Scanner test | --------- | --------- | NG |
| 556 | Motor test | --------- | --------- | NG |
| 557 | LED test | --------- | ----- | NG |
| 558 | LCD test | --------- | --------- | NG |
| 559 | Document jam detection | 1:ON / 2:OFF | ON | OK |
| 561 | Key test | --------- | --- | NG |
| 567 | T1 timer | 001~255 sec | 046 | OK |
| 570 | Break \% select | 1:61\% / 2:67\% | 61\% | OK |
| 571 | ITS auto redial time set | 00~99 | 05 | OK |
| 572 | ITS auto redial line disconnection time set | 001~999sec | 185sec | OK |
| 573 | Remote turn-on ring number | 00~99 | 10 | OK |
| 590 | FAX auto redial time set | 00~99 | 05 | OK |
| 591 | FAX auto redial line disconnection time set | 001~999sec | 185sec | OK |
| 592 | CNG transmit select | 1:OFF / 2:ALL / 3:AUTO | ALL | OK |
| 593 | Time between CED and 300 bps | 1:75ms / 2:500ms / 3:1sec | 75 ms | OK |


| Code | Function | Set Value | Default | Remote Setting |
| :---: | :---: | :---: | :---: | :---: |
| 594 | Overseas DIS detection | 1:1st / 2:2nd | 1st | OK |
| 595 | Receive error limit value | 1:5\% / 2:10\% / 3:15\% / 4:20\% | 10\% | OK |
| 596 | Transmit level set | -15~00dbm | -11dbm | OK |
| 598*1 | Receiving Sensitivity | -20~-48dbm | -42dbm | OK |
| 599 | ECM Frame size | 1:256 / 2:64 | 256byte | OK |
| 710 | Memory clear except History data | --------- | --------- | NG |
| 717 | Transmit speed select | 1:9600/ 2:7200/3:4800/ 4:2400 | 9600bps | OK |
| 718 | Receive speed select | 1:9600/ 2:7200/ 3:4800/ 4:2400 | 9600bps | OK |
| 722 | Redial tone detect | 1:ON / 2:OFF | ON | OK |
| 745 | Power on film feed | 1:ON / 2:OFF | ON | OK |
| 763 | CNG detect time for friendly reception | 1:10s / 2:20s / 3:30s | 30s | OK |
| 773 | DIS-DCS interval | 1:500msec / 2:200msec | 200ms | OK |
| 774 | T4 timer | 00~99 x 100ms | 00ms | OK |
| 815 | Sensor \& VOX test | --------- | -------- | NG |
| 852 | Print test pattern | --------- | ---- | NG |
| 853 | Top margin | 1~9 mm | 5 | OK |
| 861 | Paper size | 1:A4 / 2:LETTER | A4 | OK |
| 874 | DTMF ON time | 06~20 $\times 10 \mathrm{msec}$ | $10 \times 10 \mathrm{msec}$ | OK |
| 875 | DTMF OFF time | 06~20 $\times 10 \mathrm{msec}$ | $10 \times 10 \mathrm{msec}$ | OK |
| 880 | History list | 1:Start | ----- | NG |
| 881 | Journal 2 | 1:Start | -------- | NG |
| 882 | Journal 3 | 1:Start | --------- | NG |
| 961 | TEL/FAX pseudo ring back time | 01~10 sec | 07sec | OK |
| 962 | TEL/FAX pseudo ring back time and bell time | 05~30 sec | 10sec | OK |
| 991 | Remote Setup list | 1:Start | --------- | OK |
| 994 | Remote Journal list | 1:Start | --------- | OK |
| 995 | Remote Journal 2 list | 1:Start | --------- | OK |
| 996 | Remote Journal 3 list | 1:Start | --------- | OK |
| 998 | Remote History list | 1:Start | ------- | OK |
| 999 | Remote Service list | 1:Start | --------- | OK |

OK means "can set".
NG means "can not set".

## Note:

- *1 : Power is OFF/ON after changing this set value.
- Refer to 11.1.3.Service Function Table (P.65) for descriptions of the individual codes.


## Example:

If you want to set value in the "004 Print confirmation report", press the dial key number 1,2 or 3 corresponding to the Set Value you want to select. (1:ERROR / 2:ON / 3:OFF)

### 12.5. Troubleshooting Details

### 12.5.1. Outline

Troubleshooting is for recovering quality and reliability by determining the broken component and replacing, adjusting or cleaning it as required. First, determine the problem then decide the troubleshooting method. If you have difficulty finding the broken part, determine which board is broken. (For example: the Digital PCB, Analog PCB, etc.) The claim tag from a customer or dealer may use different expressions for the same problem, as they are not a technician or engineer. Using your experience, test the problem area corresponding to the claim. Also, returns from a customer or dealer often have a claim tag. For these cases as well, you need to determine the problem. Test the unit using the simple check list on 12.5.3.1.Simple Check List (P.103). Difficult problems may be hard to determine, so repeated testing is necessary.

### 12.5.2. Starting Troubleshooting

Determine the symptom and the troubleshooting method.


REFERENCE:
(*1): 12.2.Error Messages-Display (P.74)
(*2): 12.5.3.1.Simple Check List (P.103)
(*3): 12.5.7.Power Supply Board Section (P.126)
(*4): 12.5.5.Digital Board Section (P.117)

### 12.5.3. Troubleshooting Items Table

| ITEM | SYMPTOM | REFERENCE |
| :---: | :---: | :---: |
| ADF <br> (Auto Document Feeder) | The document does not feed. | See 12.5.4.1.No Document Feed (P.104) |
|  | Document jam | See 12.5.4.2.Document Jam (P.105) |
|  | Multiple feed | See 12.5.4.3.Multiple Document Feed (P.106) |
|  | Skew | See 12.5.4.4.Document Skew (P.107) |
| Recording paper feed | The recording paper does not feed. | See 12.5.4.5.The Recording Paper does not Feed (P.108) |
|  | Paper jam | See 12.5.4.6.Paper Jam (P.109) |
|  | Multiple feed and skew | See 12.5.4.7.Recording Paper Multiple Feed and Skew (P.110) |
| Printing | The sent fax data is skewed. | See 12.5.4.8.The Sent Fax Data is Skewed (P.110) |
|  | The received fax data is skewed. | See 12.5.4.9.The Received Fax Data is Skewed (P.110) |
|  | The received or copied data is expanded. | See 12.5.4.10.Received or Copied Data is Expanded (P.111) |
|  | A black page is copied. | See 12.5.4.11.A Blank Page is Copied (P.112) |
|  | A blank page is received. | See 12.5.4.12.A Blank Page is Received (P.114) |
|  | Black or white vertical line | See 12.5.4.13.Black or White Vertical Line (P.114) |
|  | Black or white lateral line on print out | See 12.5.4.14.Black or White Lateral Line on Print Out (P.115) |
|  | An abnormal image is printed | See 12.5.4.15.An Abnormal Image is Printed (P.116) |
| Communication FAX, TEL <br> (Analog board) | Cannot communicate by fax. An error code is displayed. | See 12.3.2.Communication Section (P.89) and Journal Report (P.76) |
|  | Cannot talk. <br> The DTMF tone doesn't work. <br> The handset / monitor doesn't work, etc. | See 12.5.6.Analog Board Section (P.124) |
| Operation panel | Keys are not accepted. | See 12.5.8.Operation Panel Section (P.128) |
| Sensor | If the electric circuit is the cause, the error message corresponding to the sensor will be displayed. | See 12.5.9.Sensor Section (P.129) |

12.5.3.1. Simple Check List

| SERIAL NO. |  | DATE |  |
| :---: | :---: | :---: | :---: |
|  | FUNCTION | JUDGEMENT | REFERENCE |
| FAX operation | Transmission | OK / NG |  |
|  | Receiving | OK / NG |  |
| Copy operation |  | OK / NG |  |
| Telephone operation | Handset transceiver / receiver | OK / NG |  |
|  | MONITOR | OK / NG |  |
|  | Ringer sound | OK / NG |  |
|  | Dial operation | OK / NG |  |
|  | Volume operation | OK / NG |  |
| Operation Panel | Key check | OK / NG | Service code \#561 <br> (Refer to 10Test Mode (P.60).) |
|  | LED check | OK / NG | Service code \#557 <br> (Refer to 10Test Mode (P.60).) |
|  | LCD check | OK / NG | Service code \#558 <br> (Refer to 10Test Mode (P.60).) |
| Sensor | Sensor check | OK / NG | Service code \#815 <br> (Refer to 10Test Mode (P.60).) |
| Clock | Display changing | OK / NG | Is the time kept correctly? Check with another clock. |

### 12.5.4. ADF (Auto Document Feed) Section

### 12.5.4.1. No Document Feed



## REFERENCE:

(*1): 14.2.4.HOW TO REMOVE THE SEPARATION HOLDER AND EXIT ROLLER (P.139)
(*2): 14.2.15.INSTALLATION POSITION OF THE LEAD WIRES (P.150)
(*3): 14.2.13.HOW TO REMOVE THE MOTOR BLOCK AND SEPARATION ROLLER (P.148)
(*4): 10Test Mode (P.60)
(*5): 14.2.14.HOW TO REMOVE THE GEARS OF MOTOR BLOCK (P.149)
(*6): 6.4.5.Stepping Motor Drive Circuit (RX) (P.27)
(*7): 12.5.5.Digital Board Section (P.117)
(*)): 12.5.9.Sensor Section (P.129)
(*9): 12.5.7.Power Supply Board Section (P.126)

### 12.5.4.2. Document Jam



## REFERENCE

(*1): 14Disassembly and Assembly Instructions (P.134)
(*2): 10Test Mode (P.60)
(*3): 14.2.4.HOW TO REMOVE THE SEPARATION HOLDER AND EXIT ROLLER (P.139)
(*4): 12.5.9.Sensor Section (P.129)

### 12.5.4.3. Multiple Document Feed

- When using thick paper etc., sometimes the document will not be fed. (*1)

Check the separation roller. (*2) Confirm whether the roller is dirty or not and is attached correctly. (*3)


## REFERENCE

(*1): 8.6.Installing the Recording Paper (P.57)
(*2): 14.2.13.HOW TO REMOVE THE MOTOR BLOCK AND SEPARATION ROLLER (P.148)
(*3): 14Disassembly and Assembly Instructions (P.134)
(*4): 14.2.4.HOW TO REMOVE THE SEPARATION HOLDER AND EXIT ROLLER (P.139)
(*5): 15Maintenance (P.151)
Note:
When confirming if the characters are extended or distorted, or if the feed problem is occurred, use this test chart format. (Refer to 16.3.3.Test Chart (P.169).)

### 12.5.4.4. Document Skew



## REFERENCE

(*1): 15.1.Maintenance Items and Component Locations (P.151)
(*2): 14Disassembly and Assembly Instructions (P.134)
(*3): 14.2.5.HOW TO REMOVE THE IMAGE SENSOR (CIS) (P.140)
(*4): 7.1.Overview (P.52)
(*5): We recommend making a copy of the test chart in 16.3.3.Test Chart (P.169) and using it.

### 12.5.4.5. The Recording Paper does not Feed

When setting the recording paper, confirm if the paper is set correctly. (*1)


## REFERENCE:

(*1): 8.6.Installing the Recording Paper (P.57)
(*2): 14.2.8.HOW TO REMOVE THE PICKUP ROLLER (P.143)
(*3): 12.5.7.Power Supply Board Section (P.126)
(*4): 10Test Mode (P.60)
(*5): 14.2.11.HOW TO REMOVE THE DIGITAL, ANALOG, SENSOR BOARDS (P.146)
(*6): 14.2.14.HOW TO REMOVE THE GEARS OF MOTOR BLOCK (P.149)
(*7): 14.2.7.HOW TO REMOVE THE PLATEN ROLLER AND BACK COVER (P.142)
(*8): 12.5.5.Digital Board Section (P.117)
(*9): We recommend making a copy of the test chart in 16.3.3.Test Chart (P.169) and using it.

### 12.5.4.6. Paper Jam



## REFERENCE:

(*1): 15.3.Jams (P.158)
(*2): 15.1.Maintenance Items and Component Locations (P.151)
(*3): 14Disassembly and Assembly Instructions (P.134)
(*4): 10Test Mode (P.60)
(*5): 6.5.Sensors and Switches (P.31)
(*6): 14.2.8.HOW TO REMOVE THE PICKUP ROLLER (P.143)

### 12.5.4.7. Recording Paper Multiple Feed and Skew



## REFERENCE:

(*1): 14.2.7.HOW TO REMOVE THE PLATEN ROLLER AND BACK COVER (P.142)
(*2): 14.2.8.HOW TO REMOVE THE PICKUP ROLLER (P.143)

### 12.5.4.8. The Sent Fax Data is Skewed



## REFERENCE:

(*1): We recommend making a copy of the test chart in 16.3.3.Test Chart (P.169) and using it.
(*2): 12.5.4.4.Document Skew (P.107)

### 12.5.4.9. The Received Fax Data is Skewed



## REFERENCE:

(*1): We recommend making a copy of the test chart in 16.3.3.Test Chart (P.169) and using it.
(*2): 12.5.4.7.Recording Paper Multiple Feed and Skew (P.110)

### 12.5.4.10. Received or Copied Data is Expanded



REFERENCE:
(*1): 15.4.1.Document feeder/recording paper feeder/scanner glass cleaning (P.160)
(*2): 14Disassembly and Assembly Instructions (P.134)
(*3): 14.2.4.HOW TO REMOVE THE SEPARATION HOLDER AND EXIT ROLLER (P.139)
(*4): We recommend making a copy of the test chart in 16.3.3.Test Chart (P.169) and using it.

### 12.5.4.11. A Blank Page is Copied



REFERENCE:
(*1): 10Test Mode (P.60)
(*2): 6.4.3.Thermal Head (P.24)
(*3): 14.2.6.HOW TO REMOVE THE THERMAL HEAD (P.141)
(*4): We recommend making a copy of the test chart in 16.3.3.Test Chart (P.169) and using it.
(*5): 12.5.4.12.A Blank Page is Received (P.114)
(From the previous)


### 12.5.4.12. A Blank Page is Received



## REFERENCE:

(*1): 10Test Mode (P.60)
(*2): 12.5.6.1.Check Sheet for Signal Route (P.124)
(*3): 12.5.4.11.A Blank Page is Copied (P.112)

### 12.5.4.13. Black or White Vertical Line



## REFERENCE:

(*1): We recommend making a copy of the test chart in 16.3.3.Test Chart (P.169) and using it.
(*2): 15.1.Maintenance Items and Component Locations (P.151)
(*3): 15.4.1.Document feeder/recording paper feeder/scanner glass cleaning (P.160)
(*4): 15.4.2.Thermal Head Cleaning (P.161)
(*5): 14.2.6.HOW TO REMOVE THE THERMAL HEAD (P.141)

### 12.5.4.14. Black or White Lateral Line on Print Out



REFERENCE:
(*1): 10Test Mode (P.60)
(*2): 14.2.14.HOW TO REMOVE THE GEARS OF MOTOR BLOCK (P.149)
(*3): 14.2.15.INSTALLATION POSITION OF THE LEAD WIRES (P.150)
(*4): 14Disassembly and Assembly Instructions (P.134)
(*5): We recommend making a copy of the test chart in 16.3.3.Test Chart (P.169) and using it..
(* 6 ): 12.5.4.11.A Blank Page is Copied (P.112)
(*7): 12.5.5.Digital Board Section (P.117)

### 12.5.4.15. An Abnormal Image is Printed



REFERENCE:
(*1): 10Test Mode (P.60)
(*2): 12.5.6.1.Check Sheet for Signal Route (P.124)
(*3): 14.2.6.HOW TO REMOVE THE THERMAL HEAD (P.141)
(*4): We recommend making a copy of the test chart in 16.3.3.Test Chart (P.169) and using it.

### 12.5.5. Digital Board Section

When the unit fails to boot up the system, take the troubleshooting procedures very carefully. It may have a serious problem. The symptom: No response when the power is turned on. (No LCD display, and keys are not accepted.)
The first step is to check the power source. If there is no problem with the power supply unit, the problem may lie in the digital unit (main board).
As there are many potential causes in this case (ASIC, DRAM, etc.), it may be difficult to specify what you should check first. If a mistake is made in the order of checks, a normal part may be determined faulty, wasting both time and money.
Although the tendency is to regard the problem as a serious one (IC malfunction, etc.), usually most cases are caused by solder faults (poor contact due to a tunnel in the solder, signal short circuit due to solder waste).


## Note:

1. Electrical continuity may have existed at the factory check, but a faulty contact occurred as a result of vibration, etc., during transport.
2. Solder waste remaining on the board may get caught under the IC during transport, causing a short circuit.

Before we begin mass production, several hundred trial units are produced at the plant, various tests are applied and any malfunctions are analyzed. (In past experiences, digital IC (especially DRAM and FLASH ROM) malfunctions are extremely rare after installation in the product.)
This may be repaired by replacing the IC, (DRAM etc.). However, the real cause may not have been an IC malfunction but a soldering fault instead.
Soldering faults difficult to detect with the naked eye are common, particularly for ASIC and RA (Resistor Array). But if you have an oscilloscope, you can easily determine the problem site or IC malfunction by checking the main signal lines.
Even if you don't have such a measuring instrument, by checking each main signal line and resoldering it, in many cases the problem will be resolved.
An explanation of the main signals (for booting up the unit) is presented below.

## Don't replace ICs or stop repairing until checking the signal lines.

An IC malfunction rarely occurs. (By understanding the necessary signals for booting up the unit, the "Not Boot up" display is not a serious problem.)

## What are the main signals for booting up the unit?

Please refer to 12.5.5.1.Digital Block Diagram (P.118).
The ASIC (IC1) controls all the other digital ICs. When the power is turned on, the ASIC retrieves the operation code stored in the FLASH ROM (IC6), then follows the instructions for controlling each IC. All ICs have some inner registers that are assigned to a certain address.
It is the address bus by which the ASIC designates the location inside each IC. And the data bus reads or writes the data in order to transmit the instructions from the ASIC to the ICs.
These signal lines are all controlled by voltages of $3.3 \mathrm{~V}(\mathrm{H})$ or $0 \mathrm{~V}(\mathrm{~L})$

### 12.5.5.1. Digital Block Diagram

You also need to check the signal lines listed here [List 1] when the unit fails to boot up the system. Those signal lines should remain normal. Other signal lines are not directly related to that failure even if they have faults or troubles.
[List 1]

| (1) | $\mathrm{D} 0 \sim \mathrm{D} 7$ | (Data Bus) |
| :---: | :---: | :---: |
| (2) | $A 0 \sim A 15$ | (Address Bus) |
| (3) | $\overline{\mathrm{RD}}$ | (Read Signal) |
|  | ROMCS | (ROM Select Signal) |
|  | $\overline{\mathrm{WR}}$ | (Write Signal) |
| (4) | RBA0 ~RBA5 | (Bank Address Signal) |
| (5) | RAS | (DRAM Row Address Strobe Signal) |
|  | $\overline{\mathrm{CAS}}$ | (DRAM Column Address Strobe Signal) |
| (6) | MDMCS | (Modem Select Signal) |

As long as these signals remain normal, once the power is turned on, each IC can repeatedly output $3.3 \mathrm{~V}(\mathrm{H})$ and $0 \mathrm{~V}(\mathrm{~L})$. The following shows NG and normal wave patterns.

NG Wave pattern (Refer to NG EXAMPLE)

OV never appears.

3.3 V or 5 V never appears.


## Normal Wave Patterns



## Remarks:

When you use an oscilloscope to judge whether a signal to be tested is normal or NG, perform the signal check in exactly the same order as in [List 1]. (If the ASIC fails to access the FLASH ROM, the ASIC cannot access DRAM normally.)
The digital circuit actually operates according to the timing combinations of these signals. If the timing of these signals is even slightly delayed, the circuit will not work. Nor will it if the IC is defective and the output voltage level is not normal although the timing of these signals is accurate enough to meet the specifications. (Make sure that your oscilloscope is calibrated before starting a test.)
Therefore, it is imperative to confirm whether each IC outputs the signal at the correct level. (See the I/O Pin No. Diagram.) The signal level should be constantly output at between $3.3 \mathrm{~V}(\mathrm{H})$ and $\mathrm{OV}(\mathrm{L})$ as described earlier.
Note:
Simply check the output level and make sure if the IC repeatedly outputs the signal at between $3.3 \mathrm{~V}(\mathrm{H})$ and $0 \mathrm{~V}(\mathrm{~L})$.

## I/O and Pin No. Diagram



IC4


DRAM


After the power is turned on, the ASIC initializes and checks each IC.
The ROM, DRAM, and modem are checked.
If initialization fails for the ICs, the system will not boot up.
In this case, please find the cause as follows.


## REFERENCE:

12.5.5.2.NG Example (P.123)
12.5.7.Power Supply Board Section (P.126)


Other NG example while the power is ON and the LCD displays the following.

LCD display


This display occurs when the temperature of the thermistor on the terminal head is NG.
Faulty connection of the thermal head connector.

ASIC IC1 pins 4 and 139 or the thermistor on the thermal head is NG.

### 12.5.5.2. NG Example

Short circuit from the adjacent signal wires.
Check for a short circuit in the IC leads and the signal wire at the through hole.

2.


### 12.5.6. Analog Board Section

This chapter provides the testing procedures required for the analog parts. A signal route to be tested is determined depending upon purposes. For example, the handset TX route begins at the handset microphone and the signal is output to the telephone line. The signal mainly flowing on this route is analog. You can trace the signal with an oscilloscope. The signal flow on each route is shown in the Check Sheet here. If you find a specific problem in the unit, for example if you cannot communicate with the Handset, trace that signal route locally with the following Check Sheet and locate the faulty point.

### 12.5.6.1. Check Sheet for Signal Route

(SYMPTOM)
ITEMS TO CHECK

## Note:

\{ \}: Inside the Digital Board

### 12.5.6.2. Defective ITS (Integrated Telephone System) Section

## 1. No handset transmission / reception and no monitor reception

Perform a signal test in the ITS or the NCU section and locate a defective point (where the signal disappears) on each route between the handset microphone and telephone line (sending), or between the telephone line and the handset speaker (receiving), or between the microphone and the telephone line (sending), or between the telephone line and the speaker (receiving). Check the components at that point. 12.5.6.1.Check Sheet for Signal Route (P.124) is useful for this investigation.

## 2. No pulse dialing


3. No ring tone (or No bell)

4. No tone dialing

Does a DTMF signal appear at pin 56 of IC5 (digital board)?


Replace IC5.

Following the NCU section and ITS section, search for the point where the signal disappears on the route between pin 56 of IC5 (digital board) and the telephone jack and check the components at that point. (DTMF for TEL LINE: Refer to Check Sheet for Signal Route.)

## REFERENCE:

12.5.6.1.Check Sheet for Signal Route (P.124)

REFERENCE:
12.5.6.1.Check Sheet for Signal Route (P.124)
6.7.NCU Section (P.42)

### 12.5.7. Power Supply Board Section

### 12.5.7.1. Key Components for Troubleshooting

Check the following parts first: F101.
This comes from our experience with experimental tests. For example: power supply and lightning surge voltage test, withstanding voltage test, intentional short circuit test, etc.

## Caution:

If you find a melted fuse in the unit, do not turn on the power until you locate and repair the faulty parts (except for the fuse); otherwise the fuse will melt again and you cannot pinpoint the faulty point.

In most cases, the symptom is that nothing is output. It is more likely that the fault is in the primary side rather than the secondary side. Check the primary side first.

## POWER SUPPLY BLOCK DIAGRAM



### 12.5.7.2. Troubleshooting Flow Chart



### 12.5.8. Operation Panel Section

### 12.5.8.1. No Key Operation



## REFERENCE:

(*1): 10Test Mode (P.60)

### 12.5.8.2. No LCD Indication



REFERENCE:
(*1): 10Test Mode (P.60)
(*2): 14.2.2.HOW TO REMOVE THE OPERATION PANEL BLOCK (P.137)

### 12.5.9. Sensor Section

Refer to 6.5.Sensors and Switches (P.31) for the circuit descriptions.
The Test Function makes the sensor circuit check easier. (Refer to 10Test Mode (P.60).)
For example, as for "COVER OPEN SENSOR", "CO" is turned ON/OFF on the display when you open or close the front cover. Also, document sensor, read position sensor, recording paper sensor and jam sensor are turned ON/OFF by the copy operation. Therefore, each sensor can be checked for proper mechanical operation.
As for the electric check, check whether each voltage is right or not with following flowchart turning each sensor lever ON/OFF manually.
12.5.9.1. Check the Document Top Sensor (SW337).

```
Check the voltage at pin 6 of IC301(Operation board).
SW lever pressed: 0 V
(Document top)
SW lever released: 5 V
(Out of document top)
```



```
Replace IC301.
```



Replace SW337. Check the voltage at pin 6 of IC301 again.
12.5.9.2. Check the Document Set Sensor (SW338).
"CHECK DOCUMENT"


### 12.5.9.3. Check the Cover Open Sensor (SW502)

$\qquad$ "COVER OPEN"

Check the voltage at pin 66 of IC5(Digital board). SW lever released: 33 V
(Open)
SW lever pressed: 0 V
(Close)

12.5.9.4. Check the Paper Top Sensor (PS401)
"PAPER JAMMED"


### 12.5.9.5. Check the HOOK Switch (SW101)

Check the voltage at pin 43 of IC1 (Digital board).
SW lever released : 3.3 V
NG
Check the soldering at RA13 (Digital board).

NG
Check the voltage at pin 43 of IC1 again.

Replace IC501.

### 12.5.10. CIS (Contact Image Sensor) Section



## REFERENCE

(*1): 10Test Mode (P.60)
Refer to 6.4.4.Scanning Block (P.26).

### 12.5.11. Thermal Head Section



Note:
Refer to 6.4.3.Thermal Head (P.24).


## 14 Disassembly and Assembly Instructions

Before disassembling, remove the Ink film.


### 14.1. DISASSEMBLY FLOW CHART

### 14.1.1. UPPER CABINET SECTION



CROSS REFERENCE:
A-1 : 14.2.1.HOW TO REMOVE THE PAPER TRAY AND RECORDING PAPER SUPPORT (P.136)
A-2 : 14.2.2.HOW TO REMOVE THE OPERATION PANEL BLOCK (P.137)
A-3 : 14.2.3.HOW TO REMOVE THE OPERATION BOARD AND LCD (P.138)
A-4 : 14.2.4.HOW TO REMOVE THE SEPARATION HOLDER AND EXIT ROLLER (P.139)
A-5 : 14.2.5.HOW TO REMOVE THE IMAGE SENSOR (CIS) (P.140)
A-6 : 14.2.6.HOW TO REMOVE THE THERMAL HEAD (P.141)
A-7 : 14.2.7.HOW TO REMOVE THE PLATEN ROLLER AND BACK COVER (P.142)
A-8 : 14.2.8.HOW TO REMOVE THE PICKUP ROLLER (P.143)
A-9 : 14.2.9.HOW TO REMOVE THE CASSETTE LEVER (P.144)

### 14.1.2. LOWER CABINET SECTION



## CROSS REFERENCE:

A-1 : 14.2.1.HOW TO REMOVE THE PAPER TRAY AND RECORDING PAPER SUPPORT (P.136)
B-1 : 14.2.10.HOW TO REMOVE THE BOTTOM FRAME (P.145)
B-2 : 14.2.11.HOW TO REMOVE THE DIGITAL, ANALOG, SENSOR BOARDS(P.146)
B-3 : 14.2.12.HOW TO REMOVE THE POWER SUPPLY BOARD AND AC CORD (P.147)
B-4 : 14.2.13.HOW TO REMOVE THE MOTOR BLOCK AND SEPARATION ROLLER (P.148)
B-5 : 14.2.14.HOW TO REMOVE THE GEARS OF MOTOR BLOCK (P.149)

### 14.2. DISASSEMBLY PROCEDURE

### 14.2.1. HOW TO REMOVE THE PAPER TRAY AND RECORDING PAPER SUPPORT

## PROCEDURE: A-1

Ref. No. A-1

1) Pull up and remove the RECORDING PAPER SUPPORT in the direction of the arrow.
2) Remove the PAPER TRAY in the direction of the arrow.

14.2.2. HOW TO REMOVE THE OPERATION PANEL BLOCK

Ref. No. A-2

1) Remove the SPRING from the RIB. (Ref No. B-1)
2) Unhook all the connectors connecting the main cabinet with the OPERATION PANEL BLOCK. (Ref No. B-1)
3) Open the OPERATION PANEL BLOCK by pulling up the center part.
4) Pull out both sides of the arms. (Fig. A)
5) Remove the OPERATION PANEL BLOCK.


### 14.2.3. HOW TO REMOVE THE OPERATION BOARD AND LCD

## PROCEDURE: A-1 --> B-1 --> A-2 --> A-3

Ref. No. A-3

1) Remove the 3 screws (A)-a.
2) Remove the OPERATION PANEL COVER.
3) Remove the 2 screws (A)-b.
4) Disconnect the CONNECTOR.
5) Remove the OPERATION BOARD.
6) Resolder the wire on the LCD.
7) Remove the LCD.


The Lead wire come out
OPERATION PANEL COVER

14.2.4. HOW TO REMOVE THE SEPARATION HOLDER AND EXIT ROLLER

PROCEDURE: $\mathrm{A}-1 \rightarrow \mathrm{~B}-1 \rightarrow \mathrm{~A}-2 \rightarrow \mathrm{~A}-3 \rightarrow \mathrm{~A}-4$

Ref. No. A-4

## SEPARATION HOLDER

1) Release the hook. (See Fig. A)
2) Remove the Document Feed Support. (See Fig. A)
3) Remove the SEPARATION HOLDER.

## EXIT ROLLER

1) Pull out the Gear from Exit Roller.
2) Remove the EXIT ROLLER.


### 14.2.5. HOW TO REMOVE THE IMAGE SENSOR (CIS)

PROCEDURE: A-1 --> B-1 --> A-2 --> A-5

Ref. No. A-5

1) Remove the 2 screws (A).
2) Remove the CONNECTOR.
3) Remove the IMAGE SENSOR (CIS). (Fig. A)


The another side is pickuped similarly.

### 14.2.6. HOW TO REMOVE THE THERMAL HEAD

## PROCEDURE: A-1 --> A-6

Ref. No. A-6

1) Push the BACK COVER OPEN BUTTON to open back cover.
2) Remove the 2 GUIDEs (Fig. A) and CONNECTORs.
3) Remove the THERMAL HEAD.

1. Insert the right side GUIDE first as follows.

2. Put the wire between the RIB as Fig. B.
3. Insert the other side GUIDE. The another side is pickuped similarly.
14.2.7. HOW TO REMOVE THE PLATEN ROLLER AND BACK COVER

Ref. No. A-7

1) Push the BACK COVER OPEN BUTTON to open back cover.
2) Release the stopper. (Fig. A)
3) Push both side arms of the BACK COVER to outside, then move the cover up. (Fig. B, Fig. C)
4) Remove the BACK COVER.
5) Remove the GEAR and 2 SPACERs from the ribs as Fig. D.
6) Remove the PLATEN ROLLER.


Fig. D


Fig. B


Fig. A
14.2.8. HOW TO REMOVE THE PICKUP ROLLER

## PROCEDURE: A-1 --> A-7 --> A-8

Ref. No. A-8

1) Remove the 2 screws A-a.
2) Remove the COVER
3) Remove the screws A-b.
4) Remove the 2 CORNER GUIDEs.
5) Remove the GEAR.
6) Remove the PICKUP ROLLER.


### 14.2.9. HOW TO REMOVE THE CASSETTE LEVER

Ref. No. A-9

1) Remove the 2 Springs
2) Pull up and remove the CASSETTE LEVER (Fig. A).
3) Pull up and remove the CASSETTE PLATE (Fig. B)

Note: Inserting the CASSETTE PLATE to the unit, then insert the 2 Springs.


Fig. A
14.2.10. HOW TO REMOVE THE BOTTOM FRAME

PROCEDURE: A-1 --> B-1

Ref. No. B-1

1) Remove the 9 screws (A).
2) Remove the 1 screws (B).
3) Remove the BOTTOM FRAME.


### 14.2.11. HOW TO REMOVE THE DIGITAL, ANALOG, SENSOR BOARDS

PROCEDURE: A-1 --> B-1 --> B-2

Ref. No. B-2
<ANALOG / DIGITAL / INTERFACE BOARD>

1) Remove the 3 screws (A)-a.
2) Remove the ANALOG BOARD.
3) Disconnect the CONNECTORs-a.
4) Remove the DIGITAL BOARD.
5) Remove the 2 screws (A)-b.
6) Disconnect the CONNECTORs-b and CONNECTOR-c.
7) Remove the INTERFACE BOARD.
<SENSOR BOARD>
8) Remove the 2 screws (A)-c.
9) Disconnect the CONNECTOR-d.
10) Remove the SENSOR BOARD.

14.2.12. HOW TO REMOVE THE POWER SUPPLY BOARD AND AC CORD

PROCEDURE: B-1 $\rightarrow$ B-2 $\rightarrow$ B-3

Ref. No. B-3

1) Remove the Analog Board. (Refer to B-2.)
2) Remove the 2 screws (A).
3) Remove the Power Supply Board with AC Cord from Main Cabinet.
4) Remove the 1 screw (B).
5) Unsolder the Point-B. (See Fig. A)
6) Remove the POWER SUPPLY BOARD and $A C$ CORD.


The soldering of AC Cord


### 14.2.13. HOW TO REMOVE THE MOTOR BLOCK AND SEPARATION ROLLER

```
PROCEDURE: A-1 --> B-1 --> B-2 --> B-4
```

Ref. No. B-4

1) Remove the 4 screws (A)
2) Remove the MOTOR BLOCK.
3) Remove the SEPARATION ROLLER. (Fig. A)

## Note:

When install the SEPARATION ROLLER, it inserted fully until the click is heard.


## CAUTION:

When you set up, fasten these screws in order of number below.

(A)
14.2.14. HOW TO REMOVE THE GEARS OF MOTOR BLOCK

PROCEDURE: A-1 --> B-1 --> B-2 --> B-3 --> B-5

Ref. No. B-5

1) Remove the 3 screws (D).
2) Unlock the claws with TORQUE LIMITTER (Gear), then pull the TORQUE LIMITTER (Shaft).
3) Remove the 2 MOTORs and FRAME.
4) Remove the GEAR-a.

5) Remove the ARM Ass'y.
6) Remove the GEAR-b.
7) Remove the GEAR-c.
8) Remove the SUPPORT SPACER.
9) Remove the GEAR-d.
10) Remove the GEAR-e.
11) Remove the GEAR-f.
12) Remove the GEARs-g
13) Remove the GEARs-h.
14) Remove the GEARs-i.


### 14.2.15. INSTALLATION POSITION OF THE LEAD WIRES



## 15 Maintenance

### 15.1. Maintenance Items and Component Locations

### 15.1.1. Outline

Maintenance and repairs are performed using the following steps

1. Periodic maintenance

Inspect the equipment periodically and if necessary, clean any contaminated parts
2. Check for breakdowns

Look for problems and consider how they arose.
If the equipment can be still used, perform copying, self testing or communication testing.
3. Check equipment

Perform copying, self testing and communication testing to determine if the problem originates from the transmitter, receiver or the telephone line.
4. Determine causes

Determine the causes of the equipment problem by troubleshooting.
5. Equipment repairs

Repair or replace the defective parts and take appropriate measures at this stage to ensure that the problem will not recur
6. Confirm normal operation of the equipment

After completing the repairs, conduct copying, self testing and communication testing to confirm that the equipment operates normally.

## 7. Record keeping

Make a record of the measures taken to rectify the problem for future reference
15.1.2. Maintenance Check Items/Component Locations


### 15.1.2.1. Maintenance List

| No. | OPERATION | CHECK | REMARKS |
| :---: | :--- | :--- | :--- |
| 1 | Document Path | Remove any foreign matter such as paper. | - |
| 2 | Rollers | If the roller is dirty, clean it with a damp cloth then dry thor- <br> oughly. | Refer to 15.4.1.Document feeder/recording <br> paper feeder/scanner glass cleaning (P.160). |
| 3 | Platen Roller | If the platen is dirty, clean it with a damp cloth then dry <br> thoroughly. Remove the paper and film cartridge before <br> cleaning. | - |
| 4 | Thermal Head | If the thermal head is dirty, clean the printing surface with a <br> cloth moistened with denatured alcohol (alcohol without <br> water), then dry thoroughly. | Refer to 15.4.2.Thermal Head Cleaning (P.161). <br> 5 |
| Sensors | Document top sensor (SW337), Document set sensor <br> (SW338), Cover open sensor (SW502), Paper top sensor <br> (SW502), Film detection sensor (SW501), Film end sensor <br> (SW1003). Confirm the operation of the sensors. | See 15.1.2.Maintenance Check Items/Compo- <br> nent Locations (P.151) and 14.2.11.HOW TO <br> REMOVE THE DIGITAL, ANALOG, SENSOR <br> BOARDS (P.146). |  |
| 6 | Glass | Ab the glass is dirty, clean them with a dry soft cloth. <br> or loose parts | Refer to 15.4.1.Document feeder/recording <br> paper feeder/scanner glass cleaning (P.160). |

### 15.1.2.2. Maintenance Cycle

| No. | Item | Cleaning Cycle | Replacement |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Cycle | Procedure |
| 1 | Separation Roller (Ref. No. 145)*2 | 3 months | 7 years*1 (31,500 documents) | Refer to 14.2.13.HOW TO REMOVE THE MOTOR BLOCK AND SEPARATION ROLLER (P.148). |
| 2 | Separation Rubber (Ref. No. 13) | 3 months | 7 years (31,500 documents) | Refer to 15.4.1.Document feeder/recording paper feeder/scanner glass cleaning (P.160). |
| 3 | Feed Rollers (Ref. No. 11, 56, 94) | 3 months | 7 years (31,500 documents) | Refer to 14Disassembly and Assembly Instructions (P.134). |
| 4 | Thermal Head (Ref. No. 40) | 3 months | 7 years (31,500 documents) | Refer to 14.2.6.HOW TO REMOVE THE THERMAL HEAD (P.141). |
| 5 | Platen Roller (Ref. No. 90) | 3 months | 7 years (31,500 documents) | Refer to 14.2.7.HOW TO REMOVE THE PLATEN ROLLER AND BACK COVER (P.142). |
| 6 | Pickup Roller (Ref. No. 96) | 3 months | 7 years (31,500 documents) | Refer to 14.2.8.HOW TO REMOVE THE PICKUP ROLLER (P.143). |

Note:
*1 These values are standard and may vary depending on usage conditions
*2 Refer to 20.1.Cabinet, Mechanical and Electrical Parts Location (P.193).

### 15.2. GEAR SECTION

### 15.2.1. GEAR OPERATION

Once a mode is selected, the Drive Motor Gear rotates clockwise (CW) and then the controlling positions of Swing Gears A, B and C determine which gears convey their drive power in each mode. See "Sensor Location" in 6.5.Sensors and Switches (P.31).

### 15.2.1.1. TRANSMIT MODE

The TX MOTOR rotate CCW and conveys its power to the document separation roller gear and document Exit Roller Gear.


### 15.2.1.2. PAPER PICK UP AND PAPER EXIT MODE

The RX MOTOR rotate CCW and swing Gear B engages Gear C, and conveys its power to the Pickup Roller Gear. The Swing Gear B engages Gear D, and conveys its power to the Exit Roller Gear.


### 15.2.1.3. PRINT MODE

The RX MOTOR rotate CW and Swing Gear B engages Gear F, and conveyers its power to Platen Roller Gear and Ink Film Driver Gear.
The Swing Gear B engages Gear E, and conveys its power to the Exit Roller Gear.


### 15.2.1.4. COPY MODE

RX side: Paper Pickup mode $\rightarrow$ Print mode $\rightarrow$ Paper Exit mode.
TX side: Transmit mode.

### 15.2.2. Mechanical Movements in the Main Operations (transmitting documents, receiving faxes and copying)

15.2.2.1. Idle Status


Note:

- See "Sensor Locations" in 6.5.Sensors and Switches (P.31).
- CW......clockwise
- CCW....counterclockwise


### 15.2.2.2. Transmitting Documents

When the document is set in the paper tray,
does the Document Set Sensor (SW338) turn does the Document Set Sensor (SW338) turn ON?


## REFERENCE:

12.5.9.Sensor Section (P.129).

### 15.2.2.3. Receiving Fax

Is the recording paper installed into the paper cassette properly?


## Note:

See "Sensor Locations" in 6.5.Sensors and Switches (P.31).
15.2.2.4. Copying
(a) Document detection
(b) Pre-feeding documents
(c) Feeding recording paper Feeding document paper
(d) Copying
(e) Ejecting recording paper
(f) Ejecting documents


[^2]
### 15.3. Jams

### 15.3.1. Recording Paper Jams

### 15.3.1.1. When the recording paper has jammed in the unit

The display will show the following.


1. Open the front cover by pulling up the centre part.

2. Release the back cover by pushing the green button (1).

- You can also release the back cover by pushing in the green lever (²).


3. Open the back cover.

4. Remove the jammed recording paper (3).

5. Turn the blue gear (4)) in the direction of the arrow until the ink film is tight ((5)) and at least one layer of ink film is wrapped around the blue core (6).


## Correct



Incorrect


No ink film is wrapped around the blue core.

6. Close the back cover securely by pushing down on the dotted area at both ends (ㄱ) , then close the front cover securely ( (8).


### 15.3.2. Document Jams - sending

1. Open the front cover by pulling up the centre part. Remove the jammed document carefully ((1)).

2. Close the front cover securely.

Note:

- Do not pull out the jammed paper forcibly before opening the front cover.


### 15.4. Cleaning

### 15.4.1. Document feeder/recording paper feeder/scanner glass cleaning

Clean the document feeder/scanner glass when:

- Documents or recording paper frequently misfeed.
- Smudges or black/white lines appear on the original document when sending or copying.

1. Disconnect the power cord and the telephone line cord.
2. Open the front cover by pulling up the centre part.

3. Clean the document feeder rollers (1) and rubber flap ((2)) with a cloth moistened with isopropyl rubbing alcohol, and let all parts dry thoroughly. Clean the scanner glass ((3)) with a soft, dry cloth.

Caution:

- Do not use paper products, such as paper towels or tissues.


4. Close the front cover securely.

5. Insert the recording paper gently,
6. Connect the power cord and the telephone line cord.
(See 8.4.Installing the Paper Tray (P.56) and 8.6.Installing the Recording Paper (P.57))

### 15.4.2. Thermal Head Cleaning

If smudges or black/white lines appear on a copied/received document, check whether there is dust on the thermal head. Clean the thermal head to remove the dust.

1. Disconnect the power cord and the telephone line cord.
2. Open the front cover by pulling up the centre part.

3. Release the back cover by pushing the green button ((1)).

- You can also release the back cover by pushing in the green lever ((2)).


4. Open the back cover. Remove the ink film (③).

5. Clean the thermal head (4) with a cloth moistened with isopropyl rubbing alcohol, and let it dry thoroughly.

## Caution:

- To prevent a malfunction due to static electricity, do not use a dry cloth and do not touch the thermal head directly.


6. Re-install the ink film and close the covers
7. Insert the recording paper gently
8. Connect the power cord and the telephone line cord.

## 16 Miscellaneous

### 16.1. Terminal Guide of the ICs Transistors and Diodes

### 16.1.1. Digital Board

(s,
16.1.2. Analog Board


### 16.1.3. Operation Board



### 16.1.4. Power Supply Board

| PFVIFA5518N | TL431CDBVR | 2SK3561 |  | PFVD1N4005 PFVDD1NL20U PR1005, HER503 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |

### 16.1.5. Interface Board

| B1HAGFF00015 | B1CHRD000003 |  <br> 2SB1322 |  |
| :---: | :---: | :---: | :---: |

### 16.2. How to Replace the Flat Package IC

Even if you do not have the special tools (for example, a spot heater) to remove the Flat IC, with some solder (large amount), a soldering iron and a cutter knife, you can easily remove the ICs that have more than 100 pins.

### 16.2.1. Preparation

- PbF (: Pb free) Solder
- Soldering Iron

Tip Temperature of $700^{\circ} \mathrm{F} \pm 20^{\circ} \mathrm{F}\left(370^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$
Note: We recommend a 30 to 40 Watt soldering iron. An expert may be able to use a 60 to 80 Watt iron where someone with less experience could overheat and damage the PCB foil.

- Flux

Recommended Flux: Specific Gravity $\rightarrow 0.82$.
Type $\rightarrow$ RMA (lower residue, non-cleaning type)
Note: See 2.1.About Lead Free Solder (PbF: Pb free) (P.6).

### 16.2.2. Flat Package IC Removal Procedure

1. Put plenty of solder on the IC pins so that the pins can be completely covered.

## Note:

If the IC pins are not soldered enough, you may give pressure to the P.C. board when cutting the pins with a cutter.

2. Make a few cuts into the joint (between the IC and its pins) first and then cut off the pins thoroughly.

3. While the solder melts, remove it together with the IC pins.


When you attach a new IC to the board, remove all solder left on the land with some tools like a soldering wire. If some solder is left at the joint on the board, the new IC will not be attached properly.

### 16.2.3. Flat Package IC Installation Procedure

1. Temporarily fix the FLAT PACKAGE IC, soldering the two marked pins.

*Check the accuracy of the IC setting with the corresponding soldering foil.
2. Apply flux to all pins of the FLAT PACKAGE IC.


Flux
3. Solder the pins, sliding the soldering iron in the direction of the arrow.


### 16.2.4. Bridge Modification Procedure

1. Lightly resolder the bridged portion.
2. Remove the remaining solder along the pins using a soldering iron as shown in the figure below.


### 16.3. Test Chart

### 16.3.1. ITU-T No. 1 Test chart

## THE SLEREXE COMPANY LIMITED

SAPORS LANE - BOOLE - DORSET - BH 258 ER

TELEPHONE BOOLE (945 13) 51617 - TELEX 123456

```
Dr. P.N. Cundall,
```

Mining Surveys Ltd.,
Holroyd Road,
Reading,
Berks.
Dear Pete,

Permit me to introduce you to the facility of facsimile transmission.

In facsimile a photocell is caused to perform a raster scan over the subject copy. The variations of print density on the document cause the photocell to generate an analogous electrical video signal. This signal is used to modulate a carrier, which is transmitted to a remote destination over a radio or cable communications link.

At the remote terminal, demodulation reconstructs the video signal, which is used to modulate the density of print produced by a printing device. This device is scanning in a raster scan synchronised with that at the transmitting terminal. As a result, a facsimile copy of the subject document is produced.

Probably you have uses for this facility in your organisation. Yours sincerely,

Phil.
P.J. CROSS

Group Leader - Facsimile Research

### 16.3.2. ITU-T No. 2 Test Chart


16.3.3. Test Chart


## 17 Schematic Diagram

### 17.1. Digital Board (PCB1)


USB INTERFACE ( MODEL ONLY WITH USB)
KX-FP701CX/KX-FP702CX : DIGITAL BOARD (2/4)



### 17.2. Analog Board (PCB2)




KX-FP701CX/KX-FP702CX : ANALOG BOARD

### 17.3. Operation Board (PCB3)



### 17.4. Power Supply Board (PCB4)



### 17.5. Interface Board (PCB5)



KX-FP701CX/KX-FP702CX : INTERFACE BOARD
17.6. Sensor Board (PCB6)


KX-FP701CX/KX-FP702CX : SENSOR BOARD

## 18 Printed Circuit Board

### 18.1. Digital Board (PCB1)

### 18.1.1. Bottom View



### 18.1.2. Component View


KX-FP701CX/KX-FP702CX: DIGITAL BOARD (Component View)

### 18.2. Analog Board (PCB2)

### 18.2.1. Bottom View



### 18.2.2. Component View


18.3. Operation Board (PCB3)

### 18.3.1. Bottom View



### 18.3.2. Component View



### 18.4. Power Supply Board (PCB4)

(Bottom View)

(Component View)


KX-FP701CX/KX-FP702CX: Power Supply Board

### 18.5. Interface Board (PCB5)

### 18.5.1. Bottom View



KX-FP701CX/KX-FP702CX: INTERFACE BOARD (Bottom View)

### 18.5.2. Component View



KX-FP701CX/KX-FP702CX: INTERFACE BOARD (Component View)
18.6. Sensor Board (PCB6)
(Bottom View)

(Component View)


KX-FP701CX/KX-FP702CX: SENSOR BOARD

## 19 Appendix Information of Schematic Diagram

## Note:

1. DC voltage measurements are taken with an oscilloscope or a tester with a ground.
2. The schematic diagrams and circuit board may be modified at any time with the development of new technology.


Important safety notice
Components identified by $\triangle$ mark have special characteristics important for safety. When replacing any of these components, use only the manufacturer's specified parts.

## 20 Exploded View and Replacement Parts List

### 20.1. Cabinet, Mechanical and Electrical Parts Location

### 20.1.1. General Section



### 20.1.2. Operation Panel Section



### 20.1.3. Back Cover Section




### 20.1.4. Upper Cabinet Section



### 20.1.5. Lower Cabinet Section


20.1.6. Gear Block Section


### 20.1.7. Screws

|  | Figure | |
|---|---|---|
| (A) | [\||1 <br> $\$ 3 \times 10 \mathrm{~mm}$ |
| (B) |  |
| (C) | 隹 |
| (D) | (IIIII) <br> $\phi 2.6 \times 10 \mathrm{~mm}$ |
| (E) | $\square$ м $\phi 3 \times 10 \mathrm{~mm}$ |

### 20.1.8. Accessories and Packing Materials



### 20.2. Replacement Parts List

Notes:

1. The marking (RTL) indicates that the Retention Time is limited for this item.
After the discontinuation of this assembly in production, the item will continue to be available for a specific period of time. The retention period of availability is dependent on the type of assembly, and in accordance with the laws governing parts and product retention.
After the end of this period, the assembly will no longer be available.
2. Important safety notice

Components identified by $\uparrow$ mark have special characteristics important for safety. When replacing any of these components, use only manufacture's specified parts.
3. The $S$ mark means the part is one of some identical parts. For that reason, it may be different from the installed part.
4. RESISTORS \& CAPACITORS

Unless otherwise specified;
All resistors are in ohms $(\Omega) \mathrm{K}=1000 \Omega, \mathrm{M}=1000 \mathrm{k} \Omega$
All capacitors are in MICRO FARADS ( $\mu \mathrm{F}$ ) $\mathrm{P}=\mu \mu \mathrm{F}$
*Type \& Wattage of Resistor
Type

| $\|$ERC:Solid ERX:Metal Film PQ4R:Carbon <br> ERD:Carbon <br> PQRD:Carbon ERG:Metal Oxide ERS:Fusible Resistor <br> ERF:Cement Resistor |
| :--- |
| Wattage     <br> $10,16: 1 / 8 \mathrm{~W}$ $14,25: 1 / 4 \mathrm{~W}$ $12: 1 / 2 \mathrm{~W}$ $1: 1 \mathrm{~W}$ $2: 2 \mathrm{~W}$ |
| $3: 3 \mathrm{~W}$ |

*Type \& Voltage of Capacitor
Type

| ECFD:Semi-Conductor | ECCD,ECKD,ECBT,PQCBC : Ceramic |
| :--- | :--- |
| ECQS:Styrol | ECQE,ECQV,ECQG : Polyester |
| PQCUV:Chip | ECEA,ECSZ : Electrolytic |
| ECQMS:Mica | ECQP : Polypropylene |

Voltage

| ECQ Type | ECQG <br> ECQV Type | ECSZ Type | Others |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| $1 \mathrm{H}: 50 \mathrm{~V}$ | $05: 50 \mathrm{~V}$ | $0 \mathrm{~F}: 3.15 \mathrm{~V}$ | 0 J | $: 6.3 \mathrm{~V}$ | 1 V | $: 35 \mathrm{~V}$ |
| $2 \mathrm{~A}: 100 \mathrm{~V}$ | $1: 100 \mathrm{~V}$ | $1 \mathrm{~A}: 10 \mathrm{~V}$ | 1 A | $: 10 \mathrm{~V}$ | $50,1 \mathrm{H}: 50 \mathrm{~V}$ |  |
| $2 \mathrm{E}: 250 \mathrm{~V}$ | $2: 200 \mathrm{~V}$ | $1 \mathrm{~V}: 35 \mathrm{~V}$ | 1 C | $: 16 \mathrm{~V}$ | 1 J | $: 63 \mathrm{~V}$ |
| $2 \mathrm{H}: 500 \mathrm{~V}$ |  | $0 J: 6.3 \mathrm{~V}$ | $1 \mathrm{E}, 25: 25 \mathrm{~V}$ | 2 A | $: 100 \mathrm{~V}$ |  |

### 20.2.1. Cabinet and Electrical Parts

### 20.2.1.1. Operation Panel Section

| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| 1 | PFGV1022Z | TRANSPARENT PLATE | PC |
| 2 | PFGD1081Z | CARD, TEL |  |
| 3 | PFGP1427X | PANEL, LCD | PC |
| 4 | PFHX2102Z | PLASTIC PARTS, RING STOP | PC |
| 5 | PFHX2104Z | PLASTIC PARTS, RING START | PC |
| 6 | PFHX2103Z | PLASTIC PARTS, RING COPY | PC |
| 7 | PFGG1315X1 | GRILLE, OPERATION PANEL (KX- <br> FP701CX) | PS-HB |
| 7 | PFGG1315W1 | GRILLE, OPERATION PANEL (KX- <br> FP702CX) | PS-HB |
| 8 | PFDR1105Z | ROLLER, DOCUMENT EXIT |  |
| 9 | PFDG1148Z | GEAR, DOCUMENTEXITROLLER | POM-HB |
| 10 | PFHG1283Z | SPACER, PAD (RUBBER) |  |
| 11 | PFHR1719Z | COVER, SEPARATION HOLDER | ABS |
| 12 | PFHR1720Z | SPACER, DOC. FEED SUPPORT | POM-HB |
| 13 | PFUS1836Z | COIL SPRING |  |
| 14 | PFUS1837Z | COIL SPRING, DOC. FEED |  |
| 15 | PFUV1112Z | COVER, OPERATION | PS-HB |
| 16 | PFJS08M93Z | CONNECTOR, 8PIN |  |


| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| 17 | PFBX1290Z1 | PUSH BUTTON, 11 KEY | ABS |
| 18 | PFBX1289Y1 | PUSH BUTTON, 3 KEY | ABS |
| 19 | PFBX1291Z1 | PUSH BUTTON, 16 KEY | ABS |
| 20 | PFBC1203Z1 | PUSH BUTTON | ABS |
|  |  |  |  |

### 20.2.1.2. Back Cover Section

| $\begin{aligned} & \text { Ref. } \\ & \text { No. } \end{aligned}$ | Part No. | Part Name \& Description | Remarks |
| :---: | :---: | :---: | :---: |
| 31 | PFDE1189Y2 | LEVER, CASSETTE | PS-HB |
| 32 | PFKV1071Y2 | COVER, U TURN | PS-HB |
| 33 | PFQT2999Z | INDICATION LABEL, PAPER SET |  |
| 34 | PFGT3418Z-M | NAME PLATE, AL (KX-FP701CX) | S |
| 34 | PFGT3419Z-M | NAME PLATE, AL (KX-FP702CX) | S |
| 35 | PFQT2980Z | INDICATION LABEL, OPEN |  |
| 36 | Not used |  |  |
| 37 | PFKS1039W | TRAY, CASSETTE PLATE (KX- FP701CX) | PS-HB |
| 37 | PFKS1039Z | TRAY, CASSETTE PLATE (KX- FP702CX) | PS-HB |
| 38 | PFUS1414Z | COIL SPRING, PICK UP |  |
| 39 | PFHG1088Z | RUBBER PARTS, PAPER TION |  |
| 40 | PFUS1409Z | TORSION SPRING, EARTH |  |
| 41 | PFDR1040Z | ROLLER, SUPPORT | POM-HB |
| 42 | PFUS1407Y |    <br> TORSION <br> ROLLER SPRING, EXIT SUB |  |
| 43 | PFUV1055Y | COVER, GUIDE | PS-HB |
| 44 | PFHR1188Y | GUIDE, CORNER/R (KX-FP701CX) | POM-HB |
| 44 | PFHR1221Y | GUIDE, CORNER/R (KX-FP702CX) | POM-HB |
| 45 | PFHR1187Y | GUIDE, CORNER/L (KX-FP701CX) | POM-HB |
| 45 | PFHR1220X | GUIDE, CORNER/L (KX-FP702CX) | POM-HB |
| 46 | PFDN1062Z | ROLLER, PICK UP | POM-N |
| 47 | PFDE1188Z | SPACER, PICK UP DELAY | POM-HB |
| 48 | PFDG1290Z | GEAR, PICK UP ROLLER | POM-HB |
| 49 | PFDG1293Z | GEAR, DOCUMENT | POM-HB |
| 50 | PFUS1034Z | TORSION SPRING, GUIDE DOC. |  |
| 51 | PFHX1605Z | SPACER, SLIDER GEAR SHEET | PET |
| 52 | PFKR1028Y1 | GUIDE, DOCUMENT/R | ABS-HB |
| 53 | PFKR1027X1 | GUIDE, DOCUMENT/L | ABS-HB |
| 54 | PFDN1043Z | ROLLER, PLATEN |  |
| 55 | PFHR1717Z | SPACER, PLATEN/L | POM-HB |
| 56 | PFHR1718Z | SPACER, PLATEN/R | POM-HB |
| 57 | PFDG1165Y | GEAR, PLATEN | POM-HB |
| 58 | PFDE1192Y1 | LEVER, LOCK | ABS-HB |
| 59 | PFUS1404Z | TORSION SPRING, EARTH LEVER |  |
| 60 | PFUS1258Z | COIL SPRING, LOCK LEVER |  |
| 61 | PFHX1596Z | SPACER, LOCK LEVER SHEET | PET |
| 62 | PFUS1232Z | COIL SPRING, BACK TENSION |  |
| 63 | PFDG1160Z | GEAR BACK TENSION | POM-HB |
| 64 | PFHS1029Z | COVER, BACK TENSION | GS |
| 65 | PFDG1291Z | GEAR, PICK UP IDLER | POM-HB |
| 66 | PFDG12922 | GEAR, PICK UP IDLER | POM-HB |
| 67 | PFUA1042X | CHASSIS, U TURN | PS-HB |
| 68 | PFDN1061Z | ROLLER, EXIT/R | POM-N |
| 69 | PFDN1060Z | ROLLER, EXIT/L | POM-N |
| 70 | PFUG1015Z | GUIDE, BASE | PS-HB |
| 71 | PFDG1289Z | GEAR, EXIT IDLER | POM-HB |
| 72 | PFDG1288Z | GEAR, EXIT ROLLER | POM-HB |
| 73 | PFUS1237Z | COIL SPRING, PAPER TOP |  |
| 74 | PFDE1128Y | LEVER, PAPER TOP SENSOR | POM-HB |
|  |  |  |  |

### 20.2.1.3. Upper Cabinet Section

| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| 91 | PFKM1231Z1 | CABINET BODY, MAIN | PBT+ABS <br> -v1 |
| 92 | PFJS11M16Z | CONNECTOR, 11 PIN |  |
| 93 | PFHR1715Z | GUIDE, HOLDER HEAD/L | POM |
| 94 | PFHR1716Z | GUIDE, HOLDER HEAD/R | POM |


| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| 95 | PFUS1835Z | COIL SPRING, HEAD/B |  |
| 96 | L1CC00000069 | PRINTERUNITS, THERMAL HEAD |  |
| 97 | PFUS1834Z | COIL SPRING, HEAD/A |  |
| 98 | PFHX2161Z | SHEET, STATIC ELEC. |  |
| 99 | PFQT1934Z | INDICATION LABEL, INK FILM |  |
| 100 | PFQT2990Z | INDICATION LABEL, BLUE GEAR |  |
| 101 | PFUS1418Z | TORSION SPRING, OPERATION <br> PANEL LOCK |  |
| 102 | PFUS1756Z | COIL SPRING, SPEXIT ROLLER |  |
| 103 | PFUS1833Z | COIL SPRING, CIS |  |
| 104 | PFDR1098Z | ROLLER, DOC SUPPORT |  |
| 105 | PFDF1017Z | SHAFT |  |
| 106 | PFJS07M91Z | CONNECTOR, 7 PIN |  |
| 107 | N2GZYY00003 | IMAGE SENSOR |  |
|  |  |  |  |

20.2.1.4. Lower Cabinet Section

| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| 121 | PFMD1114Z | FRAME, BOTTOM |  |
| 122 | PFHG1050Z | RUBBER PARTS, LEG |  |
| 123 | PFJS08M92Z | CONNECTOR, 8 PIN |  |
| 124 | XWC4BFJ | WASHER |  |
| 125 | PQHR945Z | BAND |  |
| 126 | JOKE00000101 | INSULATOR | A |
| 127 | PQLB1E1 | INSULATOR | A |
| 128 | PFJA03A016Z | POWER CORD (KX-FP701CX) |  |
| 128 | PFJA03A017Z | POWER CORD (KX-FP702CX) | POM-HB |
| 129 | PFJS03M90Z | CONNECTOR, 3 PIN | POM-HB |
| 130 | PFDE1191Y | LEVER, PAPER TOP SENSOR |  |
| 131 | PFBH1022Y1 | PUSH BUTTON, HOOK |  |
| 132 | PFUS1338Y | TORSION SPRING, SPEAKER |  |
| 133 | LOAA05A00048 | SPEAKER | POM |
| 134 | PFJS02L04Z | CONNECTOR, 2 PIN | POM-HB |
| 135 | PFDR1014Z | ROLLER, DOC. SEPARATION) | POM-HB |
| 136 | PFDE1133Z | SPACER, DELAY |  |
| 137 | PFDF1087Z | SHAFT, DOC SEPARATION |  |
| 138 | PFUS1839Z | SPRING, HEAD EARTH |  |
| 139 | Not used |  | SHEET/INTER PCB |
| 140 | PFHX2170Z |  |  |
|  |  |  |  |

### 20.2.1.5. Gear Block Section

| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| 151 | PFUA1041X | CHASSIS, GEAR BASE | PBT+ABS <br> -V1 |
| 152 | PFDX1029Z | GEARASS'Y, TORQUE LIMIT |  |
| 153 | PFDG1151Z | GEAR | POM-HB |
| 154 | PFDG1287Z | GEAR | POM-HB |
| 155 | PFDG1150Z | GEAR | POM-HB |
| 156 | PFDG1149Z | GEAR | POM-HB |
| 157 | PFUS1231Y | COIL SPRING |  |
| 158 | PFDG1158Z | GEAR | POM-HB |
| 159 | PFDG1159Z | GEAR | POM-HB |
| 160 | PFHR1355Y | ARM | POM-HB |
| 161 | PFHR1186Z | SPACER, SUPPORT BASE | POM-HB |
| 162 | PFDG1282Z | GEAR | POM-HB |
| 163 | PFDG1283Z | GEAR | POM-HB |
| 164 | PFDG1284Z | GEAR | POM-HB |
| 165 | PFDG1285Z | GEAR | POM-HB |
| 166 | PFDG1153Z | GEAR | POM-HB |
| 167 | PFDG1286Z | GEAR | POM-HB |
| 168 | PFMD1062Y | FRAME |  |
| 169 | PFDG1154Z | GEAR | POM-HB |
| 170 | L6HAYYYK0017 | DC MOTOR, RX |  |
| 171 | L6HAYYYK0018 | DC MOTOR, TX |  |
|  |  |  |  |

20.2.1.6. Screws

| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| A | XTW3+10PFJ7 | TAPPING SCREW |  |
| B | XSB4+6FJ | SMALL SCREW |  |
| C | XTW3+W8PFJ | TAPPING SCREW |  |
| D | PQHV2610PJ65 | TAPPING SCREW |  |
| E | XTB3+10GFJ | TAPPING SCREW |  |
|  |  |  |  |

### 20.2.1.7. Accessories and Packing Materials

| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
| A1 | PFJA02B002Y | CORD, TELEPHONE |  |  |  |
| A2 | PQJA212M | CORD, HANDSET |  |  |  |
| A3 | PFKS1076Z2 | TRAY, RECORDING PAPER (KX- <br> FP701CX) | PS-HB |  |  |
| A3 | PFKS1094Z2 | TRAY, RECORDING PAPER (KX- <br> FP702CX) | PS-HB |  |  |
| A4 | PFUS1406Z | TRAY, RECORDINGPAPERSUPPORT |  |  |  |
| A5 | PFQX2791Z | INSTRUCTION BOOK |  |  |  |
| A6 | PFPE1498Z | ACCESSORY PARTS, INK RIBBON <br> (10M) |  |  |  |
| A7 | PFQW1945Y | LEAFLET, INK FILM |  |  |  |
| A8 | PFJXE1441Z | HANDSET ASS'Y |  |  |  |
| A9 | PFKS1080Z1 | SPACER, A4 (KX-FP701CX) |  |  |  |
| A10 | PFQW2771Z | LEAFLET, THAI (KX-FP701CX) |  |  |  |
| A11 | PFQW2725Z | LEAFLET, ARABIC |  |  |  |
| A12 | PFQW2726Z | LEAFLET, FARSI (KX-FP701CX) |  |  |  |
| P1 | PFZE1667Y-M | GIFT BOX (KX-FP701CX) | S |  |  |
| P1 | PFZE1668Y-M | GIFT BOX (KX-FP702CX) | S |  |  |
| P2 | PFPN1467Z | CUSHION, LEFT |  |  |  |
| P3 | PFPN1468Z | CUSHION, RIGHT |  |  |  |
| P4 | XZB32X45A04 | PROTECTION COVER |  |  |  |
| P5 | XZB20X30A04 | PROTECTION COVER |  |  |  |
| P6 | XZB20X35A04 | PROTECTION COVER |  |  |  |
| P7 | PFPH1085Z | PACKING SHEET |  |  |  |
|  |  |  |  |  |  |

### 20.2.2. Digital Board Parts

### 20.2.2.1. KX-FP701CX

| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| PCB1 | PFWP1FP701CX | DIGITAL BOARD ASS'T (RTL) |  |
|  |  |  |  |
|  |  | (ICs) |  |
| IC1 | C1ZBZ0003300 | IC |  |
| IC2 | C0CBADD00009 | IC |  |
| IC3 | C0CBCBD00047 | IC |  |
| IC4 | C3ABKY000001 | IC |  |
| IC5 | C1CB00001959 | IC |  |
| IC6 | PFWIFP701CX | IC (ROM) |  |
| IC7 | C0JBAA000393 | IC |  |
| IC10 | C0ABEB000023 | IC |  |
| IC11 | C0JBAS000128 | IC |  |
| IC13 | C1AB00002556 | IC |  |
|  |  |  |  |
|  |  | (IC FILTERS) |  |
| L1 | J0JCC0000308 | IC FILTER |  |
| L2 | J0JCC0000286 | IC FILTER |  |
| L3 | J0JCC0000286 | IC FIITER |  |
|  |  |  |  |
|  |  | (TRANSISTORS) |  |
| Q2 | B1GBCFGG0028 | TRANSISTOR(SI) |  |
| Q4 | B1GBCFGG0028 | TRANSISTOR(SI) |  |
| Q5 | B1ABDF000025 | TRANSISTOR(SI) |  |
| Q7 | B1ABDF000025 | TRANSISTOR(SI) |  |

## KX-FP701CX/KX-FP702CX

| Ref. No. | Part No. | Part Name \& Description | Remarks | Ref. No. | Part No. | Part Name \& Description | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q8 | B1ABDF000026 | TRANSISTOR (SI) |  | R67 | ERJ2GEJ335 | 3.3M |  |
| Q9 | 2SB1218ARL | TRANSISTOR (SI) |  | R68 | ERJ2GEJ272 | 2.7K |  |
| Q11 | B1GBCFJJ0048 | TRANSISTOR (SI) |  | R69 | ERJ2GEJ333 | 33K |  |
| Q12 | B1GBCFJJ0048 | TRANSISTOR(SI) |  | R71 | ERJ2GEJ220 | 22 |  |
| Q13 | B1GBCFGG0028 | TRANSISTOR (SI) |  | R72 | ERJ2GEJ224 | 220K |  |
| Q14 | UNR521700L | TRANSISTOR (SI) |  | R73 | ERJ2GEJ823 | 82K |  |
|  |  |  |  | R74 | ERJ2GEJ183 | 18K |  |
|  |  | (CONNECTORS) |  | R75 | ERJ2GEJ184 | 180K |  |
| CN1 | PQJS18A10Z | CONNECTOR, 18 PIN | S | R79 | ERJ2GEJ473 | 47K |  |
| CN2 | PQJS18A10Z | CONNECTOR, 18 PIN | S | R80 | ERJ2GEJ103 | 10K |  |
| CN4 | K1KA07A00257 | CONNECTOR, 7 PIN |  | R82 | ERJ2GEJ682 | 6.8K |  |
| CN6 | K1KA02A00587 | CONNECTOR, 2 PIN |  | R88 | ERJ2GEJ563 | 56K |  |
| CN7 | K1KY10BA0094 | CONNECTOR, 10 PIN |  | R92 | ERJ2GE0R00 | 0 |  |
|  |  |  |  | R93 | ERJ2GE0R00 | 0 |  |
|  |  | (COMPONENTS PARTS) |  | R97 | ERJ2GEJ472X | 4.7K |  |
| CA13 | F5A421040004 | COMPONENTS PARTS |  |  |  |  |  |
| CA28 | F5A421040004 | COMPONENTS PARTS |  |  |  | (CAPACITORS) |  |
| CA32 | F5A421040004 | COMPONENTS PARTS |  | C2 | F2G0J4700032 | 47 |  |
| CA71 | F5A421040004 | COMPONENTS PARTS |  | C4 | ECUV1A105ZFV | 1 |  |
| CA82 | F5A421040004 | COMPONENTS PARTS |  | C6 | ECUE1A104KBQ | 0.1 |  |
| RA1 | ExB28V332JX | RESISTOR ARRAY |  | C8 | ECUE1H102KBQ | 0.001 |  |
| RA2 | EXB28V101JX | RESISTOR ARRAY |  | C10 | ECUV1A105ZFV | 1 |  |
| RA5 | EXB24V103JX | RESISTOR ARRAY |  | C11 | F2G0J4700032 | 47 |  |
| RA6 | EXB24V221JX | RESISTOR ARRAY |  | C21 | ECJOEF1C104Z | 0.1 |  |
| RA8 | ExB28V332JX | RESISTOR ARRAY |  | C22 | ECUE1H102KBQ | 0.001 |  |
| RA9 | EXB24V223JX | RESISTOR ARRAY |  | C23 | ECUE1H222KBQ | 0.0022 |  |
| RA10 | D1H84724A013 | RESISTOR ARRAY | S | C24 | ECUE1H101JCQ | 100P |  |
| RA11 | EXB24V124JX | RESISTOR ARRAY |  | C25 | ECJOEF1C104Z | 0.1 |  |
| RA12 | EXB24V223JX | RESISTOR ARRAY |  | C26 | ECJOEF1C104Z | 0.1 |  |
| RA13 | EXB24V332JX | RESISTOR ARRAY |  | C27 | ECUE1H102KBQ | 0.001 |  |
| RA14 | EXB24V221JX | RESISTOR ARRAY |  | C29 | ECUE1H102KBQ | 0.001 |  |
|  |  |  |  | C30 | ECJ0EF1C104Z | 0.1 |  |
|  |  | (CRYSTAL OSCILLATORS) |  | C31 | ECJOEF1C104Z | 0.1 |  |
| X2 | H0A327200147 | CRYSTAL OSCILLATOR |  | C33 | ECUE1H120JCQ | 12P |  |
| X3 | H2C240500006 | CRYSTAL OSCILLATOR |  | C34 | ECJ0EF1C104Z | 0.1 |  |
| X4 | H0J322500006 | CRYSTAL OSCILLATOR |  | C35 | ECUE1H120JCQ | 12P |  |
|  |  |  |  | C36 | ECUE1H102KBQ | 0.001 |  |
|  |  | (RESISTORS) |  | C37 | ECUE1H102KBQ | 0.001 |  |
| R2 | ERJ2GEJ101 | 100 |  | C38 | ECJ0EF1C104Z | 0.1 |  |
| R7 | ERJ2GE0R00 | 0 |  | C39 | ECJOEF1C104Z | 0.1 |  |
| R8 | ERJ2GEJ472X | 4.7K |  | C40 | ECJ0EF1C104Z | 0.1 |  |
| R9 | ERJ2GEJ333 | 33K |  | C41 | ECUE1H102KBQ | 0.001 |  |
| R10 | ERJ2GEJ472X | 4.7K |  | C42 | ECUE1H102KBQ | 0.001 |  |
| R11 | ERJ3EKF1101 | 1.1K |  | C43 | ECUE1H102KBQ | 0.001 |  |
| R12 | ERJ3EKF3602 | 36K |  | C44 | ECUE1H102KBQ | 0.001 |  |
| R16 | ERJ2GEJ101 | 100 |  | C47 | ECUE1H330JCQ | 33P |  |
| R18 | ERJ2GEJ104 | 100K |  | C48 | F2G0J4700032 | 47 |  |
| R24 | ERJ2GEJ223 | 22K |  | C49 | ECJOEF1C104Z | 0.1 |  |
| R25 | ERJ2GEJ433 | 43K |  | C50 | ECUE1H101JCQ | 100P |  |
| R26 | ERJ2GEJ203 | 20K |  | C51 | ECUE1A104KBQ | 0.1 | S |
| R29 | ERJ2GEJ222 | 2.2K |  | C52 | ECUE1H222KBQ | 0.0022 |  |
| R30 | ERJ2GEJ182 | 1.8K |  | C54 | ECUV1A224KBV | 0.22 |  |
| R31 | ERJ2GEJ4R7 | 4.7 |  | C55 | ECUE1E472KBQ | 0.0047 |  |
| R33 | ERJ2GEJ103 | 10K |  | C57 | ECUE1H222KBQ | 0.0022 |  |
| R38 | ERJ2GEJ471 | 470 |  | C61 | ECUE1H100DCQ | 10P |  |
| R39 | ERJ2GEJ334 | 330K |  | C62 | ECJ0EF1C104Z | 0.1 |  |
| R40 | ERJ2GEJ475 | 4.7M |  | C63 | ECUE1H680JCQ | 68P |  |
| R41 | ERJ2GEJ100 | 10 |  | C64 | ECUV1A105ZFV | 1 |  |
| R42 | ERJ2GE0R00 | 0 |  | C67 | ECJOEF1C104Z | 0.1 |  |
| R43 | ERJ2GEJ105X | 1M |  | C68 | ECUV1A105ZFV | 1 |  |
| R49 | ERJ2GEJ273X | 27K |  | C69 | ECJ0EF1C104Z | 0.1 |  |
| R50 | ERJ2GEJ824 | 820K |  | C70 | ECJOEF1C104Z | 0.1 |  |
| R51 | ERJ2GEJ105X | 1M |  | C72 | ECUE1H120JCQ | 12P |  |
| R53 | ERJ2GEJ272 | 2.7K |  | C73 | ECJOEF1C104Z | 0.1 |  |
| R55 | ERJ2GEJ182 | 1.8K |  | C74 | ECUE1C103KBQ | 0.01 |  |
| R56 | ERJ2GEJ564 | 560K |  | C75 | ECUE1H120JCQ | 12P |  |
| R58 | ERJ2GEJ103 | 10K |  | C77 | ECUE1A683KBQ | 0.068 |  |
| R60 | ERJ2GEJ682 | 6.8K |  | C78 | ECUE1C223KBQ | 0.022 |  |
| R61 | ERJ2GEJ332 | 3.3K |  | C79 | ECUE1H102KBQ | 0.001 |  |
| R62 | ERJ2GEJ821 | 820 |  | C80 | ECUV1H104ZFV | 0.1 |  |
| R64 | ERJ2GEJ124 | 120K |  | C83 | ECUE1A104KBQ | 0.1 |  |
| R65 | ERJ2GEJ223 | 22K |  | C84 | ECUE1H100DCQ | 10P |  |
| R66 | ERJ2GEJ473 | 47K |  | C85 | ECJOEF1C104Z | 0.1 |  |


| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| C86 | F2G1C1000014 | 10 |  |
| C87 | ECUE1H121JCQ | 120 P |  |
| C88 | F2G1C1000014 | 10 |  |
| C89 | ECUE1A104KBQ | 0.1 |  |
| C91 | ECUV0J105KBV | 1 |  |
| C99 | ECUE1H102KBQ | 0.001 |  |
| C101 | ECUE1A104KBQ | 0.1 |  |
| C102 | ECUE1A104KBQ | 0.1 |  |
| C104 | ECUE1A104KBQ | 0.1 |  |
| C105 | ECUV1A105ZFV | 1 |  |
| C115 | ECUE1H102KBQ | 0.001 |  |
| C116 | ECJ0EF1C104Z | 0.1 |  |
| C117 | ECJ0EF1C104Z | 0.1 |  |
| C120 | ECJ0EF1C104Z | 0.1 |  |
|  |  |  |  |

### 20.2.2.2. KX-FP702CX

| $\begin{gathered} \text { Ref. } \\ \text { No. } \end{gathered}$ | Part No. | Part Name \& Description | Remarks |
| :---: | :---: | :---: | :---: |
| PCB1 | PFWP1FP702CX | DIGITAL BOARD ASS'T (RTL) |  |
|  |  |  |  |
|  |  | (ICs) |  |
| IC1 | C12BZ0003300 | IC |  |
| IC2 | C0CBADD00009 | IC |  |
| IC3 | C0CBCBD00047 | IC |  |
| IC4 | C3ABKY000001 | IC |  |
| IC5 | C1CB00001959 | IC |  |
| IC6 | PFWIFP702CX | IC (ROM) |  |
| IC7 | C0JBAA000393 | IC |  |
| IC10 | COABEB000023 | IC |  |
| IC11 | COJBAS000128 | IC |  |
| IC13 | C1AB00002556 | IC |  |
|  |  |  |  |
|  |  | (IC FILTERS) |  |
| L1 | J0JCC0000308 | IC FILTER |  |
| L2 | J0JCC0000286 | IC FILTER |  |
| L3 | JOJCC0000286 | IC FILTER |  |
|  |  |  |  |
|  |  | (TRANSISTORS) |  |
| Q2 | B1GBCFGG0028 | TRANSISTOR (SI) |  |
| Q4 | B1GBCFGG0028 | TRANSISTOR (SI) |  |
| Q5 | B1ABDF000025 | TRANSISTOR (SI) |  |
| Q7 | B1ABDF000025 | TRANSISTOR (SI) |  |
| Q8 | B1ABDF000026 | TRANSISTOR(SI) |  |
| Q9 | 2SB1218ARL | TRANSISTOR (SI) |  |
| Q11 | B1GBCFJJ0048 | TRANSISTOR (SI) |  |
| Q12 | B1GBCFJJ0048 | TRANSISTOR (SI) |  |
| Q13 | B1GBCFGG0028 | TRANSISTOR (SI) |  |
| Q14 | UNR521700L | TRANSISTOR (SI) |  |
|  |  |  |  |
|  |  | (CONNECTORS) |  |
| CN1 | PQJS18A10Z | CONNECTOR, 18 PIN | S |
| CN2 | PQJS18A10Z | CONNECTOR, 18 PIN | S |
| CN4 | K1KA07A00257 | CONNECTOR, 7 PIN |  |
| CN6 | K1KA02A00587 | CONNECTOR, 2 PIN |  |
| CN7 | K1KY10BA0094 | CONNECTOR, 10 PIN |  |
|  |  |  |  |
|  |  | (COMPONENTS PARTS) |  |
| CA13 | F5A421040004 | COMPONENTS PARTS |  |
| CA28 | F5A421040004 | COMPONENTS PARTS |  |
| CA32 | F5A421040004 | COMPONENTS PARTS |  |
| CA71 | F5A421040004 | COMPONENTS PARTS |  |
| CA82 | F5A421040004 | COMPONENTS PARTS |  |
| RA1 | ExB28V332JX | RESISTOR ARRAY |  |
| RA2 | ExB28V101JX | RESISTOR ARRAY |  |
| RA5 | ExB24V103JX | RESISTOR ARRAY |  |
| RA6 | EXB24V221JX | RESISTOR ARRAY |  |
| RA8 | ExB28V332JX | RESISTOR ARRAY |  |
| RA9 | EXB24V223JX | RESISTOR ARRAY |  |
| RA10 | D1H84724A013 | RESISTOR ARRAY | S |
| RA11 | EXB24V124JX | RESISTOR ARRAY |  |


| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :---: | :---: | :---: | :---: |
| RA12 | EXB24V223JX | RESISTOR ARRAY |  |
| RA13 | ExB24V332JX | RESISTOR ARRAY |  |
| RA14 | EXB24V221JX | RESISTOR ARRAY |  |
|  |  |  |  |
|  |  | (CRYSTAL OSCILLATORS) |  |
| X2 | H0A327200147 | CRYSTAL OSCILLATOR |  |
| x3 | H2C240500006 | CRYSTAL OSCILLATOR |  |
| X4 | H0J322500006 | CRYSTAL OSCILLATOR |  |
|  |  |  |  |
|  |  | (RESISTORS) |  |
| R2 | ERJ2GEJ101 | 100 |  |
| R7 | ERJ2GE0R00 | 0 |  |
| R8 | ERJ2GEJ472X | 4.7K |  |
| R9 | ERJ2GEJ333 | 33K |  |
| R10 | ERJ2GEJ472X | 4.7K |  |
| R11 | ERJ3EKF1101 | 1.1K |  |
| R12 | ERJ3EKF3602 | 36K |  |
| R16 | ERJ2GEJ101 | 100 |  |
| R18 | ERJ2GEJ104 | 100K |  |
| R24 | ERJ2GEJ223 | 22K |  |
| R25 | ERJ2GEJ433 | 43K |  |
| R26 | ERJ2GEJ203 | 20K |  |
| R29 | ERJ2GEJ222 | 2.2K |  |
| R30 | ERJ2GEJ182 | 1.8K |  |
| R31 | ERJ2GEJ4R7 | 4.7 |  |
| R33 | ERJ2GEJ103 | 10K |  |
| R38 | ERJ2GEJ471 | 470 |  |
| R39 | ERJ2GEJ334 | 330K |  |
| R40 | ERJ2GEJ475 | 4.7M |  |
| R41 | ERJ2GEJ100 | 10 |  |
| R42 | ERJ2GE0R00 | 0 |  |
| R43 | ERJ2GEJ105X | 1M |  |
| R49 | ERJ2GEJ273X | 27K |  |
| R50 | ERJ2GEJ824 | 820K |  |
| R51 | ERJ2GEJ105X | 1M |  |
| R53 | ERJ2GEJ272 | 2.7K |  |
| R55 | ERJ2GEJ182 | 1.8K |  |
| R56 | ERJ2GEJ564 | 560K |  |
| R58 | ERJ2GEJ103 | 10K |  |
| R60 | ERJ2GEJ682 | 6.8K |  |
| R61 | ERJ2GEJ332 | 3.3K |  |
| R62 | ERJ2GEJ821 | 820 |  |
| R64 | ERJ2GEJ124 | 120K |  |
| R65 | ERJ2GEJ223 | 22K |  |
| R66 | ERJ2GEJ473 | 47K |  |
| R67 | ERJ2GEJ335 | 3.3M |  |
| R68 | ERJ2GEJ272 | 2.7K |  |
| R69 | ERJ2GEJ333 | 33K |  |
| R71 | ERJ2GEJ220 | 22 |  |
| R72 | ERJ2GEJ224 | 220K |  |
| R73 | ERJ2GEJ823 | 82K |  |
| R74 | ERJ2GEJ183 | 18K |  |
| R75 | ERJ2GEJ184 | 180K |  |
| R79 | ERJ2GEJ473 | 47K |  |
| R80 | ERJ2GEJ103 | 10K |  |
| R82 | ERJ2GEJ682 | 6.8K |  |
| R88 | ERJ2GEJ563 | 56K |  |
| R92 | ERJ2GE0R00 | 0 |  |
| R93 | ERJ2GE0R00 | 0 |  |
| R97 | ERJ2GEJ472X | 4.7K |  |
|  |  |  |  |
|  |  | (CAPACITORS) |  |
| C2 | F2G0J4700032 | 47 |  |
| C4 | ECUV1A105ZFV | 1 |  |
| C6 | ECUE1A104KBQ | 0.1 |  |
| C8 | ECUE1H102KBQ | 0.001 |  |
| C10 | ECUV1A105ZFV | 1 |  |
| C11 | F2G0J4700032 | 47 |  |
| C21 | ECJOEF1C104Z | 0.1 |  |
| C22 | ECUE1H102KBQ | 0.001 |  |
| C23 | ECUE1H222KBQ | 0.0022 |  |
| C24 | ECUE1H101JCQ | 100P |  |
| C25 | ECJOEF1C104Z | 0.1 |  |


| Ref. No. | Part No. | Part Name \& Description | Remarks |
| :---: | :---: | :---: | :---: |
| C26 | ECJOEF1C104Z | 0.1 |  |
| C27 | ECUE1H102KBQ | 0.001 |  |
| C29 | ECUE1H102KBQ | 0.001 |  |
| C30 | ECJOEF1C104Z | 0.1 |  |
| C31 | ECJOEF1C104Z | 0.1 |  |
| C33 | ECUE1H120JCQ | 12P |  |
| C34 | ECJOEF1C104Z | 0.1 |  |
| C35 | ECUE1H120JCQ | 12P |  |
| C36 | ECUE1H102KBQ | 0.001 |  |
| C37 | ECUE1H102KBQ | 0.001 |  |
| C38 | ECJOEF1C104Z | 0.1 |  |
| C39 | ECJOEF1C104Z | 0.1 |  |
| C40 | ECJOEF1C104Z | 0.1 |  |
| C41 | ECUE1H102KBQ | 0.001 |  |
| C42 | ECUE1H102KBQ | 0.001 |  |
| C43 | ECUE1H102KBQ | 0.001 |  |
| C44 | ECUE1H102KBQ | 0.001 |  |
| C47 | ECUE1H330JCQ | 33P |  |
| C48 | F2G0J4700032 | 47 |  |
| C49 | ECJOEF1C104Z | 0.1 |  |
| C50 | ECUE1H101JCQ | 100P |  |
| C51 | ECUE1A104KBQ | 0.1 | S |
| C52 | ECUE1H222KBQ | 0.0022 |  |
| C54 | ECUV1A224KBV | 0.22 |  |
| C55 | ECUE1E472KBQ | 0.0047 |  |
| C57 | ECUE1H222KBQ | 0.0022 |  |
| C61 | ECUE1H100DCQ | 10P |  |
| C62 | ECJOEF1C104Z | 0.1 |  |
| C63 | ECUE1H680JCQ | 68P |  |
| C64 | ECUV1A105ZFV | 1 |  |
| C67 | ECJOEF1C104Z | 0.1 |  |
| C68 | ECUV1A105ZFV | 1 |  |
| C69 | ECJOEF1C104Z | 0.1 |  |
| C70 | ECJOEF1C104Z | 0.1 |  |
| C72 | ECUE1H120JCQ | 12P |  |
| C73 | ECJOEF1C104Z | 0.1 |  |
| C74 | ECUE1C103KBQ | 0.01 |  |
| C75 | ECUE1H120JCQ | 12P |  |
| C77 | ECUE1A683KBQ | 0.068 |  |
| C78 | ECUE1C223KBQ | 0.022 |  |
| C79 | ECUE1H102KBQ | 0.001 |  |
| C80 | ECUV1H104ZFV | 0.1 |  |
| C83 | ECUE1A104KBQ | 0.1 |  |
| C84 | ECUE1H100DCQ | 10P |  |
| C85 | ECJOEF1C104Z | 0.1 |  |
| C86 | F2G1C1000014 | 10 |  |
| C87 | ECUE1H121JCQ | 120P |  |
| C88 | F2G1C1000014 | 10 |  |
| C89 | ECUE1A104KBQ | 0.1 |  |
| C91 | ECUV0J105KBV | 1 |  |
| C99 | ECUE1H102KBQ | 0.001 |  |
| C101 | ECUE1A104KBQ | 0.1 |  |
| C102 | ECUE1A104KBQ | 0.1 |  |
| C104 | ECUE1A104KBQ | 0.1 |  |
| C105 | ECUV1A105ZFV | 1 |  |
| C115 | ECUE1H102KBQ | 0.001 |  |
| C116 | ECJOEF1C104Z | 0.1 |  |
| C117 | ECJOEF1C104Z | 0.1 |  |
| C120 | ECJOEF1C104Z | 0.1 |  |
|  |  |  |  |

### 20.2.3. Analog Board Parts

| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| PCB2 | PFWP2FP701CX | ANALOG BOARD ASS 'Y (RTL) |  |
|  |  |  |  |
|  |  | (IC) |  |
| IC101 | C0ABEB000083 | IC |  |
|  |  |  |  |
|  |  | (TRANSISTORS) |  |
| Q105 | B1ABDF000026 | TRANSISTOR (SI) |  |
| Q106 | B1GBCFEN0010 | TRANSISTOR (SI) |  |


| Ref. No. | Part No. | Part Name \& Description | Remarks |
| :---: | :---: | :---: | :---: |
|  |  | (DIODES) |  |
| D101 | MA4120 | DIODE (SI) | S |
| D104 | MA4030 | DIODE (SI) | S |
| D106 | MA4030 | DIODE (SI) | S |
| D111 | B0ADEJ000026 | DIODE (SI) |  |
| D112 | $1 \mathrm{SS133}$ | DIODE (SI) | S |
|  |  | (JACKS AND CONNECTORS) |  |
| CN101 | K1KY10BA0093 | CONNECTOR |  |
| CN103 | K2LB1YYB0002 | JACK/SOCKET | ! |
| CN104 | K2LB1YYB0002 | JACK/SOCKET | ! |
| CN105 | K2LA1YYB0001 | JACK/SOCKET |  |
|  |  | (SWITCH) |  |
| SW101 | PFSH1A011Z | SWITCH, HOOKLEVER |  |
|  |  |  |  |
|  |  | (COILS) |  |
| L105 | PQLQR2KA113 | COIL | S |
| L106 | PQLQR2KA113 | COIL | S |
| L107 | PQLQR2KA113 | COIL | S |
| L108 | PQLQR2KA113 | COIL | S |
| L109 | PQLQR2KA113 | COIL | S |
| L110 | PQLQR2KA113 | COIL | S |
| L111 | PQLQR2KA20T | COIL | S |
| L112 | PQLQR2KA20T | COIL | S |
| L113 | PQLQR2KA20T | COIL | S |
| L114 | PQLQR2KA20T | COIL | S |
| R104 | PQLQR2KA113 | COIL | S |
|  |  |  |  |
|  |  | (PHOTO ELECTRIC TRANSDUCERS) |  |
| PC102 | 0N3181 | PHOTO COUPLER | 全S |
|  |  |  |  |
|  |  | (RELAY) |  |
| RLY101 | K6B1CYY00005 | RELAY | 4 |
|  |  |  |  |
|  |  | (THERMISTOR) |  |
| POS101 | PFRT002 | THERMISTOR | ! S |
|  |  |  |  |
|  |  | (TRANSFORMER) |  |
| T101 | G4AYA0000016 | TRANSFORMER | A |
|  |  |  |  |
|  |  | (VARISTORS) |  |
| SA101 | PFRZRA311P6T | VARISTOR | S |
| SA102 | PFRZRA102P6T | VARISTOR | AS |
|  |  |  |  |
|  |  | (RESISTORS) |  |
| R101 | ERJ3GEYJ103 | 10K |  |
| R102 | ERJ3GEYJ103 | 10K |  |
| R103 | ERJ3GEYJ220 | 22 |  |
| R106 | ERJ3GEYJ393 | 39K |  |
| R107 | ERJ3GEYJ393 | 39K |  |
| R108 | ERJ3GEYJ474 | 470K |  |
| R109 | ERJ3GEYJ163 | 16K |  |
| R110 | ERJ3GEYJ163 | 16K |  |
| R111 | ERJ3GEY0R00 | METAL FILM OXIDE RESISTOR |  |
| R112 | ERJ3GEYJ562 | 5.6K |  |
| R114 | ERDS2TJ271 | 270 | S |
| R117 | ERJ3GEYJ822 | 8.2K |  |
| R118 | ERJ3GEYJ273 | 27K |  |
| R122 | ERDS1TJ473 | 47K | S |
| R127 | ERG2SJ121 | 120 |  |
| R128 | ERJ3GEYJ223 | 22K |  |
| R129 | ERJ3GEYJ754 | 750K |  |
| R130 | ERJ3GEYJ754 | 750K |  |
| R133 | ERDS1TJ153 | 15K | S |
| R134 | ERJ3GEYJ473 | 47K |  |
| R135 | ERJ3GEYJ331 | 330 |  |
| R138 | ERJ3GEYJ912 | 9.1K |  |
| R139 | ERJ3GEYJ912 | 9.1K |  |
| R142 | ERJ3GEYJ152 | 1.5K |  |
| R143 | ERJ3GEYJ152 | 1.5K |  |


| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| R144 | ERJ3GEYJ680 | 68 |  |
| R145 | ERJ3GEYJ331 | 330 |  |
|  |  |  |  |
|  |  | CAPACITORS) |  |
| C101 | ECEA0JKA470 | 47 |  |
| C102 | ECEA0JKA470 | 47 |  |
| C103 | ECUV1E104ZFV | 0.1 |  |
| C104 | ECUV1H561KBV | 560 P |  |
| C105 | ECUV1H561KBV | 560 P |  |
| C106 | ECUV1H101JCV | 100 P |  |
| C107 | ECUV1H272KBV | 0.0027 |  |
| C108 | ECUV1C823KBV | 0.082 |  |
| C109 | ECUV1C823KBV | 0.082 |  |
| C110 | ECUV1H472KBV | 0.0047 |  |
| C111 | ECUV1C393KBV | 0.039 |  |
| C113 | ECEA1HKA4R7 | 4.7 |  |
| C115 | ECUV1C393KBV | 0.039 |  |
| C116 | ECUV1C104KBV | 0.1 |  |
| C120 | ECUV1H181JCV | $180 P$ |  |
| C121 | ECUV1H181JCV | $180 P$ |  |
| C124 | ECUV1H472KBV | 0.0047 |  |
| C126 | ECUV1H101JCV | $100 P$ |  |
| C128 | ECEA0JKA470 | 47 |  |
| C129 | ECUV1C333KBV | 0.033 |  |
| C130 | ECUV1C333KBV | 0.033 |  |
| C131 | ECUV1H103KBV | 0.01 |  |
| C132 | ECUV1H103KBV | 0.01 |  |
| C134 | ECEA0JKA470 | 47 |  |
| C135 | ECUV1H103KBV | 0.01 |  |
| C136 | F0C2E105A216 | PLASTIC FILM CAPACITOR |  |
|  |  |  |  |
|  |  |  |  |

### 20.2.4. Operation Board Parts

| Ref. No. | Part No. | Part Name \& Description | Remarks |
| :---: | :---: | :---: | :---: |
| PCB3 | PFWP3FP706CN | OPERATION BOARD ASS'Y (RTL) |  |
|  |  |  |  |
|  |  | (IC) |  |
| IC301 | C1ZBZ0002089 | IC |  |
|  |  |  |  |
|  |  | (LIQUID CRYSTAL DISPLAY) |  |
| CN302 | L5DAAFB00001 | IIQUID CRYSTAL DISPLAY | S |
|  |  |  |  |
|  |  | (CONNECTOR) |  |
| CN301 | K1KA08B00243 | CONNECTOR |  |
|  |  |  |  |
|  |  | (DIODE) |  |
| D301 | B3AAA0000534 | DIODE (SI) |  |
|  |  |  |  |
|  |  | (SWITCHES) |  |
| SW337 | K0L1BB000029 | SIGNAL SWITCHES ACTUATOR |  |
| SW338 | K0L1BB000030 | SIGNAL SWITCHES ACTUATOR |  |
|  |  |  |  |
|  |  | (SWITCHES) |  |
| SW301 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW302 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW303 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW304 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW305 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW306 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW307 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW308 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW309 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW310 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW311 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW312 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW313 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW314 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW315 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW316 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW317 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW318 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW319 | K0H1BA000259 | SPECIAL SWITCH |  |


| Ref. No. | Part No. | Part Name \& Description | Remarks |
| :---: | :---: | :---: | :---: |
| SW320 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW321 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW322 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW323 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW324 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW325 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW326 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW327 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW328 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW329 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW332 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW333 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW334 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW335 | K0H1BA000259 | SPECIAL SWITCH |  |
| SW336 | K0H1BA000259 | SPECIAL SWITCH |  |
|  |  |  |  |
|  |  | (RESISTORS) |  |
| R301 | ERJ3GEYJ332 | 3.3K |  |
| R302 | ERJ3GEYJ271 | 270 |  |
| R303 | ERJ3GEYJ181 | 180 |  |
| R304 | ERJ3GEYJ680 | 68 |  |
| R305 | ERJ3GEYJ181 | 180 |  |
| R306 | ERJ3GEYJ181 | 180 |  |
| R307 | ERJ3GEYJ472 | 4.7K |  |
| R308 | ERJ3GEY0R00 | 0 |  |
| R309 | ERJ3GEYJ102 | 1K |  |
| R310 | ERJ3GEYJ183 | 18K |  |
| R311 | ERJ3GEYJ472 | 4.7K |  |
| R312 | ERJ3GEYJ122 | 1.2K |  |
| R313 | ERJ3GEYJ821 | 820 |  |
| R316 | ERDS2TJ681 | 680 | S |
| R317 | ERJ3GEYJ472 | 4.7K |  |
| R322 | ERDS2TJ472 | 4.7K | S |
| R325 | ERJ3GEYJ181 | 180 |  |
| R326 | ERJ3GEY0R00 | 0 |  |
| R329 | ERJ3GEYJ222 | 2.2K |  |
| R331 | ERJ3GEYJ4R7 | 4.7 |  |
| L301 | ERJ3GEY0R00 | 0 |  |
|  |  |  |  |
|  |  | (CAPACITORS) |  |
| C301 | ECUV1C104ZFV | 0.1 |  |
| C302 | ECUV1H331JCV | 330P |  |
| C306 | ECUV1H102KBV | 0.001 |  |
| C307 | ECUV1H101JCV | 100P |  |
| C308 | ECUV1H101JCV | 100P |  |
| C312 | ECUV1H331JCV | 330P |  |
| C313 | ECUV1C104ZFV | 0.1 |  |
| C315 | ECUV1C104ZFV | 0.1 |  |
| C318 | ECUV1H681JCV | 680P | S |
| C320 | ECUV1C104ZFV | 0.1 |  |
|  |  |  |  |

### 20.2.5. Power Supply Board Parts

| Ref. <br> No. | Part No. | Part Name \& | Description | Remarks |
| :--- | :---: | :---: | :---: | :---: | :---: |
| PCB4 | N0AC2GJ00006 | POWER <br> (RTL) | SUPPLY BOARD ASS'Y | 介 |

### 20.2.6. Interface Board Parts

| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| PCB5 | PFLP1915CX-B | INTERFACE BOARD ASS 'Y (RTL) |  |
|  |  |  |  |
|  |  | (TRANSISTORS) |  |
| IC401 | B1HAGFF00015 | TRANSISTOR (SI) |  |
| IC402 | B1HAGFF00015 | TRANSISTOR(SI) |  |
| IC403 | B1CHRD000003 | TRANSISTOR(SI) | S |
| Q401 | 2SB1322 | TRANSISTOR(SI) | S |
| Q402 | 2SB1322 | TRANSISTOR(SI) |  |
|  |  |  |  |


| Ref. No. | Part No. | Part Name \& Description | Remarks |
| :---: | :---: | :---: | :---: |
|  |  | (DIODES) |  |
| D401 | $1 \mathrm{SS133}$ | DIODE (SI) | S |
| D403 | B0BA7R900004 | DIODE (SI) |  |
| D404 | B0BA7R900004 | DIODE (SI) |  |
| D405 | B0BA7R900004 | DIODE (SI) |  |
| D406 | B0BA7R900004 | DIODE (SI) |  |
| D407 | 1SS133 | DIODE (SI) | S |
|  |  |  |  |
|  |  | (BATTERY) |  |
| BAT401 | CR2032/H9B | LITHIUM BATTERY |  |
|  |  |  |  |
|  |  | (PHOTO ELECTRIC TRANSDUCER) |  |
| PS401 | CNA1006N | POSISTOR |  |
|  |  |  |  |
|  |  | (CONNECTORS) |  |
| CN401 | K1KA08A00440 | CONNECTOR, 8 PIN |  |
| CN402 | K1KA05AA0193 | CONNECTOR, 5 PIN |  |
| CN403 | K1KA05AA0223 | CONNECTOR, 5 PIN |  |
| CN404 | K1KA08A00498 | CONNECTOR, 8 PIN |  |
| CN405 | K1KA03A00495 | CONNECTOR, 3 PIN |  |
| CN406 | K1KA11A00158 | CONNECTOR, 11 PIN |  |
| CN407 | K1KA18A00101 | CONNECTOR, 18 PIN |  |
| CN408 | K1KA18A00101 | CONNECTOR, 18 PIN |  |
|  |  |  |  |
|  |  | (FUSES) |  |
| F401 | K5H122200005 | FUSE |  |
| F402 | K5H122200005 | FUSE |  |
|  |  |  |  |
|  |  | (RESISTORS) |  |
| R401 | ERDS1TJ101 | 100 | S |
| R403 | ERJ3GEYJ562 | 5.6K |  |
| R404 | ERJ3GEYJ821 | 820 |  |
| R405 | ERJ3GEYJ821 | 820 |  |
| R406 | ERDS1TJ152 | 1.5K |  |
| R407 | ERDS1TJ152 | 1.5K |  |
| R408 | ERJ3GEYJ222 | 2.2K |  |
| R409 | ERJ3GEYJ101 | 100 |  |
| R410 | ERDS2TJ181 | 180 | S |
|  |  |  |  |
|  |  | (CAPACITORS) |  |
| C401 | ECUV1H104ZFV | 0.1 |  |
| C404 | ECUV1H104ZFV | 0.1 |  |
| C405 | ECEA1VKA330 | 33 |  |
| C406 | ECEA1CKA221 | 220 | S |
|  |  |  |  |

### 20.2.7. Sensor Board Parts

| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| PCB6 | PFWP4FP706CN | SENSOR BOARD ASS'Y (RTL) |  |
|  |  |  |  |
| SW501 | K0MA11000041 | SIGNAL SWITCH |  |
| SW502 | PFSH1A011Z | SWITCH HOOK LEVER |  |
|  |  |  |  |

20.2.8. Service Fixtures \& Tools

| Ref. <br> No. | Part No. | Part Name \& Description | Remarks |
| :--- | :--- | :--- | :--- |
| EC1 | PQZZ7K11Z | EXTENSION CORD, 7 PIN |  |
| EC2 | PQZZ2K12Z | EXTENSION CORD, 2 PIN |  |
| EC3 | PQZZ8K15Z | EXTENSION CORD, 8 PIN |  |
| EC4 | PFZZ11K13Z | EXTENSION CORD, 11 PIN |  |
| EC5 | PFZZ5K13Z | EXTENSION CORD, 5 PIN |  |
| EC6 | PFZZ5K13Z | EXTENSION CORD, 5 PIN |  |
| EC7 | PQZZ3K12Z | EXTENSION CORD, 3 PIN |  |
| EC8 | PQZZ8K15Z | EXTENSION CORD, 8 PIN |  |
|  |  |  |  |
|  | KM79811245C0 | BASIC FACSIMILE TECHNIQUE <br> (for training service techni- <br> Cians) |  |

Note:
Tools and Extension Cords are useful for servicing (They make servicing easy.)


[^0]:    ${ }^{* 1}$ To ensure the unit operates properly, we recommend using the Panasonic replacement film. The ink film is not reusable. Do not rewind and use the ink film again.

[^1]:    To make another setting

[^2]:    Note:
    See "Sensor Locations" in 6.5.Sensors and Switches (P.31).
    REFERENCE:
    12.5.9.Sensor Section (P.129)

